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Preface

The word ‘accretion’ has a Latin origin (accretio) and means an augmentation
or increment of an initial amount by the addition of new portions. Astronomers use
this term to describe the falling of diffused matter onto a centre of gravity. Accretion
onto compact stellar objects, for example neutron stars and black holes, is accom-
panied by an enormous output of energy. In the 1970s, the study of such processes
became of special importance. It was the time when the American UHURU satellite
discovered X-ray emission from accreting black holes and neutron stars in binary
stellar systems. Some time earlier, in the end of the 1960s, when I was a graduate
student at the physics faculty of the Moscow State University (MSU), my scientific
advisor academician Ya. B. Zeldovich suggested to me to calculate the structure
and radiation spectra of the shock wave arising when gas accretes onto a neutron
star. The choice of this particular scientific problem was triggered by the following
circumstances.

In 1962, a group of American scientists led by Prof. Riccardo Giacconi discov-
ered the first X-ray sources. Before that, astronomers had known only one X-ray
source of extraterrestrial origin, namely, the solar corona. The coronal gas, heated
to a million degrees by some then unknown mechanism, was known to produce X-
ray emission. The luminosity of the solar corona in X-rays is approximately one
millionth of the optical luminosity of the Sun (4× 1033 erg/s). It was thus natural
to assume that other stars are also surrounded by hot coronae. However, simple cal-
culations showed that detectors available at that time could not detect coronae even
around the nearest stars located at distances of a few parsecs.

Nevertheless, astronomers tried to detect X-ray radiation from the Moon! The
Moon has no atmosphere, but perhaps some radiation could be produced by fluores-
cence as the Moon’s surface is illuminated by X-rays from the Sun? To investigate
this, precisely at midnight of June 18, 1962, when a full moon was shining, the Aer-
obee rocket was launched. It reached a height of 225 km. Its flight continued for
350 s and was quite successful: two of the three Geiger counters, with large surface
and good sensitivity in the range 1.5−6 keV, were operating during the flight. In
this energy range, the Earth’s atmosphere is totally opaque. Suddenly, instead of X-
ray radiation from the Moon, a bright and before unknown source was discovered,
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which was far beyond the solar system in the direction of the constellation Scorpius.
It was named Sco X-1.

Ya. B. Zeldovich

In the following years, new rocket
flights brought more and more discov-
eries of new X-ray sources. Gradually,
a sky map covered with X-ray sources
of different nature was created. The
first sources got their names accord-
ing to their location in the night sky
(Cyg X-1, Cyg X-2, Her X-1, Cen X-
3, and so on). Later it was revealed
that their X-ray luminosities were thou-
sands or even tens of thousand times
stronger than the Sun’s luminosity in
visual light. The epoch of X-ray astron-
omy, an epoch of stunning discoveries
in the universe, began.

According to simple estimates made
by Ya. B. Zeldovich himself, the shock
wave arising when the gas surround-
ing a neutron star falls onto its surface
should produce radiation primarily in
the X-ray range. My goal was to carry

out a full calculation and investigate the process in detail. The main difficulty was
connected to the following property: the mean free path of a falling particle near
the surface of the neutron star is much greater (tens of times) than the characteristic
scale of interaction between matter and radiation. In many such problems, it is not
necessary to calculate the structure of the shock wave: it is sufficient to specify the
change in density, pressure, temperature, and other physical parameters depending
on the velocity and the adiabatic index of the falling gas. In my problem, the den-
sity, temperature and other parameters depended on the energy release in the braking
zone. Moreover, plasma oscillations may arise in this zone. To describe these, the
use of kinetic plasma equations is required rather than ordinary hydrodynamics. In
the end, however, I managed to show that shock wave emission spectra from ac-
creting neutron stars could explain the observational data obtained with the recently
launched instruments.

The first identifications of cosmic X-ray sources with their optical counterparts
appeared in the 1960s, allowing a determination of their luminosities and distances
to their locations. It became clear that the large luminosities of accreting neutron
stars could be provided only in close binary systems with mass flowing from the
stellar component to the neutron star.

When I was a student of astronomy, I attended a course in astrophysics given
by the director of the Sternberg Astronomical Institute, Prof. D. Ya. Martynov. In
his lectures, he payed special attention to the processes of mass exchange in bi-
nary stellar systems through the inner Lagrangian point, and how due to the rel-
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ative orbital motion of the components, a stream of gas forms a disc-like enve-
lope around one of the stars. So, I decided to place a neutron star or even a black
hole as an accreting component in a binary system, and found that in this case,
a new type of accretion (namely – disc accretion!) is possible since the matter,
which falls onto such a powerful centre of gravity as a neutron star or a black hole,
possesses a large angular momentum that prevents it from falling radially inwards.

D. Ya. Martynov

To a first approximation, matter in the
disc moves along nearly Keplerian or-
bits. Slow radial movement of the disc
matter towards the centre of gravity ac-
companied by a large energy output
(disc accretion) can only be triggered
by exchange of angular momentum be-
tween adjacent layers of the differen-
tially rotating disc. The reason for such
exchange could be turbulence and/or
magnetic fields.

In 1969, the article with the cal-
culation and description of the shock
wave structure was published in “Astro-
nomicheskii Zhurnal”, and became my
diploma. This year, I became a post-
graduate student at the physics faculty
of the MSU. Academician Ya. B. Zel-
dovich became my scientific advisor.

As a postgraduate student, I contin-
ued to study the structure and spectra
of accretion discs that form around ac-
creting neutron stars and black holes in
close binaries due to mass flow from
the surface of an optical star.

The foundations of the theory of disc accretion were published, also in “Astro-
nomicheskii Zhurnal”, in 1973. The main part of the work was done in collabora-
tion with R. A. Sunyaev. Together we developed the so-called standard model of
disc accretion. The work was presented at the 55th symposium of the International
Astronomical Union in Madrid in 1972 (Shakura and Sunyaev 1973b). It was there
that the first observational results from the UHURU satellite were presented and the
first theoretical models of compact X-ray sources in stellar binaries discovered by
UHURU were reported. Our report in Madrid was an introduction to a highly in-
fluential article published in “Astronomy and Astrophysics” in 1973 (Shakura and
Sunyaev 1973a). On the basis of this article, I. D. Novikov and K. S. Thorne calcu-
lated the relativistic corrections required by General Relativity (Novikov and Thorne
1973).

The pioneering work made together with R. A. Sunyaev is still topical today.
According to the NASA ADS data system, the number of references to this article
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N. I. Shakura and R. A. Sunyaev in 1973 and 2017.

exceeds 8400 (as of April of 2018). It is our great pleasure to present to you this
book covering some of the most principal and important areas of modern theory of
disc and quasi-spherical accretion onto black holes and magnetized neutron stars.

In Chapter 1, the authors (G. V. Lipunova, K. L. Malanchev, and N. I. Shakura)
present the equations of disc accretion in the framework of the standard model, the
basics of the phenomenological theory of turbulent viscosity, and the properties of
thin accretion discs and their structure along the radial and vertical directions. The
authors describe analytical solutions to the basic equation of evolution of a non-
stationary viscous accretion disc, in the case of infinitely large discs and for discs in
binary systems enclosed within their Roche lobes. It is shown how the characteristic
time scale of variability in non-stationary disc accretion allows us to determine the
level of developed turbulence in accretion discs. A method for a joint numerical
solution of the evolution equation and the equations of vertical disc structure is
presented.

Chapter 2 (by N. I. Shakura) is devoted to motion of particles along spherical
geodesics around rotating black holes. Such motion is possible if the plane of the
outer parts of the accretion disc is tilted towards the equatorial plane of the rotating
black hole. A study of this motion is necessary for understanding the inner structure
of the disc. This chapter uses a special approach to determine how the quantities,
which are measured in the local frame of a fiducial observer in the axially symmetric
gravitational field, are related to each other. This approach allows us to better un-
derstand the basic principles for measuring physical quantities in GR. These basic
principles, which are systematically presented in the next chapter, are required for a
more comprehensive understanding of the structure of relativistic accretion discs.

Chapter 3 (by V. V. Zhuravlev) presents a self-consistent model of a standard
relativistic accreion disc. The disc is aligned with the equatorial plane of a rotating
black hole and calculation is performed taking full account of relativistic effects. In
the first half of the chapter, the author describes in detail how relativistic corrections
to the disc structure are deduced using a tetrad basis that is carried by an observer
comoving with the rotating matter. Further, using the basic simplifying assumptions
of the standard accretion disc model, the relativistic hydrodynamic equations are
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projected onto the tetrad basis. After that, the author presents an explicit relativistic
generalization of radial profiles of the viscous stress and the energy flux from the
disc surface.

In Chapter 4, V. V. Zhuravlev outlines the theory of twisted relativistic accretion
discs. A warped disc forms around a rotating black hole if the outer parts of the disc
are not aligned with the black hole’s equatorial plane. The author derives the equa-
tions describing the evolution of the shape of a twisted disc and the perturbations
of density and velocity necessarily arising in such a disc. This is done under some
simplifying assumptions (namely, a small aspect ratio of the disc, slow rotation of
the black hole, and a small tilt angle of the disc rings with respect to the black hole
equatorial plane), nevertheless including all general relativity effects. The author
further presents an analysis of particular regimes of non-stationary twist dynamics
(the wave and diffusion regimes), both in the framework of Newtonian dynamics
and taking into account Einstein’s relativistic precession. At the end of the chap-
ter, a calculation of the shape of a stationary relativistic twisted accretion disc for
different values of free parameters of the model is presented.

In Chapter 5, the authors (P. K. Abolmasov, N. I. Shakura, and A. A. Chashk-
ina) examine the structure of accretion discs in distant quasars from the point of
view of the spatial information obtained with the help of quasar microlensing. This
exotic effect appears when strong lensing by a foreground galaxy is accompanied
by microlensing on individual stars in it. The authors of this chapter aim to give
a general introduction to QSO microlensing and to show the opportunities of the
method, providing a review of the recent results in this area. It is also shown that
the typical variability of the radiation (observed in different spectral ranges) caused
by microlensing allows us to study the structure of both subcritical and supercritical
(super-Eddington) accretion discs. The latter are characterized by outflow of matter
from the inner parts of the disc due to strong radiation pressure. As a consequence,
a quasi-spherical envelope forms, with a radius determined by processes of scatter-
ing by free electrons. This radius has different, presumably weaker, dependence on
wavelength, whereas the effective radius of the standard subcritical disc is propor-
tional to the wavelength as r ∼ λ 4/3.

Chapter 6 (by V. V. Zhuravlev and D. N. Razdoburdin) is focused on the study
of transient growth of small perturbations in spectrally stable rotating shear flows,
in particular, those with a Keplerian profile of angular velocity. The mechanism of
perturbation growth is discussed in the simplest model of local two-dimensional adi-
abatic perturbations in a spatially homogeneous flow. Furthermore, special emphasis
is placed on mathematical methods that make it possible to perform a rigorous anal-
ysis of transient dynamics in disc models of various sophistication. The transient
growth of perturbations seems to be capable of transferring energy from a back-
ground flow to perturbations in a homogeneous Keplerian flow (in the absence of a
magnetic field). Without this energy transport, the emergence of turbulence and/or
enhanced angular-momentum flux towards the disc outskirts would not be possible.

In Chapter 7, the authors (N. I. Shakura, K. A. Postnov, A. Yu. Kochetkova, and
L. Hjalmarsdotter) examine the theoretical model of quasi-spherical subsonic accre-
tion onto slowly rotating magnetized neutron stars. In this case, the accreting matter



x Preface

slowly, with subsonic velocity, settles onto the rotating magnetosphere of the neu-
tron star, forming an elongated quasi-spherical envelope. The angular momentum
transfer in the envelope is effected through large-scale convective motions, imply-
ing that the differential rotation law in envelopes above magnetospheres of actual
X-ray pulsars corresponds to an approximately isomomentum distribution. The ac-
cretion rate in the envelope depends on the ability of the plasma to penetrate into the
magnetosphere due to the Rayleigh–Taylor instability,if cooling processes are taken
into account. Subsonic infall of matter may occur at moderate X-ray luminosities
corresponding to accretion rates of Ṁ . 4× 1016 g/s. In the case of higher accre-
tion rates, a region of free falling matter arises in the flow above the magnetosphere
due to fast Compton cooling, making accretion highly non-stationary. One can de-
termine the basic parameters of the model and estimate the magnetic field of the
neutron star when observing acceleration and slowdown in the rotation periods of
equilibrium X-ray pulsars with known orbital periods, such as GX 301-2 and Vela
X-1, in which quasi-spherical accretion from the stellar wind occurs. It is possible
to estimate the velocity of the stellar wind emitted by the optical counterpart of an
equilibrium pulsar in a binary, without conducting complex spectroscopic measure-
ments, if an independently measured magnetic field is known for the neutron star.
There is a maximal possible value for the slowdown rate of the neutron star for ac-
cretion onto a non-equilibrium pulsar. Examples of such pulsars are GX 1+4, SXP
1062 and 4U 2206+54. Knowing the slowdown rate of the rotation of such a pul-
sar and its X-ray luminosity, we may estimate a lower limit on the magnetic field
of the neutron star, which always turns out to be close to the standard value and
corresponds to the observed cyclotron peculiarities in measured spectra. The model
explains why rotation in non-equilibrium pulsars accelerates and slows down on
long timescales and why the pulsar frequency varies on short timescales. In differ-
ent binaries, these variations may display either a correlation or an anticorrelation
with the observed fluctuations in X-ray flux.

The authors of Chapter 8 (N. I. Shakura and K. A. Postnov) examine the
conditions under which the Velikhov-Chandrasekhar magneto-rotational instability
(MRI) in ideal and nonideal plasma may arise. In the presence of magnetic fields,
this instability arises in an axially-symmetric hydrodynamic flow if the angular ve-
locity of the flow decreases outwards, whereas the angular momentum, increases.
The growth rate of MRI decreases if the magnetic field becomes stronger; there is a
critical value of the magnetic field, above which the exponential growth gives way
to oscillations. The influence of viscosity and electrical conductivity of the plasma
on the development of MRI is studied. The limiting values (lower limits) of ion
mean free paths, for which MRI is still possible in thin discs obeying Kepler’s law
of rotation, are obtained.

On the other hand, the authors show that the MHD-mode becomes stabilized n
a hydrodynamic flow, which is unstable according to the Rayleigh criterion (the
angular momentum decreases outwards), for small perturbation wavelengths.

Many excellent books have been published about accretion in astrophysics. We
would like to mention, in particular, “Black-Hole Accretion Disks” by S. Kato,
J. Fukue, and S. Mineshige, “Oscillations of Disks” by S. Kato, and “Accretion
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Power in Astrophysics” by J. Frank, A. King, and D. Raine. We hope that the reader
will find the present volume useful as well.

Moscow, Nikolai Shakura
April 2018
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Chapter 1
The standard model of disc accretion

Galina Lipunova, Konstantin Malanchev, and Nikolay Shakura

Abstract Accretion discs are powerful energy factories in our Universe. They effec-
tively transform the potential energy of gravitational interaction to emission, thereby
unraveling the physics of distant objects. This is possible due to the presence of vis-
cosity, driven by turbulent motions in accretion discs. In this chapter, we describe
the equations for disc accretion in the framework of the standard model. We out-
line basic elements of the theory of turbulent viscosity and the emergence of the
α-parameter. We further describe the radial and vertical structure of thin stationary
accretion discs, and present analytical solutions to the basic equation of the evolu-
tion of a viscous accretion disc for both an infinite disc and for a disc in a binary
system. Finally, we present a numerical method to solve the equations of disc evo-
lution and vertical structure simultaneously.

1.1 Introduction

The theory of disc accretion has tremendously broad applications in astrophysics
– it is used to study for example bright objects at a wide spectral range in our own
Galaxy, the luminous centres of other active galaxies, relativistic jets from compact
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objects, protostars and the formation of planetary systems, and to explain the most
luminous sources of the universe, the gamma-ray bursts.

The basis for the theory of standard disc accretion are found in the papers by
Shakura (1973) and Shakura and Sunyaev (1973). Other important early works in-
clude the papers by Gorbatskii (1965), Lynden-Bell (1969), and Pringle and Rees
(1972). The development of the theories for the various processes connected to disc
accretion can be found in the textbooks by Kato, Fukue, and Mineshige (1998),
Frank, King, and Raine (2002) and in the overview by Abramowicz and Fragile
(2013). Galactic discs, discs in close binaries and in protoplanetary systems are dis-
cussed in the textbook by Morozov and Khoperskov (2005). Bisikalo et al. (2013)
studied the gas dynamics of mass-transfer in close binary systems. A short and com-
prehensive overview of standard disc accretion, including aspects of discs in dwarf
and X-ray novae, can be found in Lasota (2015).

In this chapter we consider the basic properties of stationary and non-stationary
discs in the framework of the standard model of disc accretion, touching only lightly
upon relativistic effects. We derive the basic equations describing non-radial infall
of matter in astrophysical situations, where the effects of viscous stresses lead to
heating of the matter and subsequent emission of thermal energy that can be ob-
served by astronomical instruments from enormous distances.

Discs are formed around stars as a result of matter with non-zero angular mo-
mentum being captured by the star’s gravitational field. The matter may originate
from the interstellar medium or be transferred from a close companion star. If the
matter is rotating in approximately a single plane, the structure is called an accretion
disc. As a result of transfer of angular momentum the matter moves towards the cen-
tral object and thereby releases its gravitational energy. This energy is transferred to
kinetic energy, increasing towards the centre, and to thermal energy of the plasma.
If the thermal energy can be emitted effectively, the disc is relatively thin.

We here consider geometrically thin ‘flat’ accretion discs. In a geometrically
thin disc, the half-thickness in the direction perpendicular to the disc plane is much
smaller than the distance to the centre at a given point in the disc. If a geometrically
thin disc has an optical depth much exceeding unity (τ� 1) in the direction perpen-
dicular to the disc plane, the equations of energy balance can be written in a rather
simple form. In this case the photons are absorbed and dissipated many times before
they leave the disc and we can assume local thermodynamic equilibrium. In a geo-
metrically thin disc we may also neglect radial advection (the transfer of heat with
matter moving radially). The condition of local thermodynamic equilibrium sug-
gests equal temperature of electrons and ions in the plasma. Moreover, the standard
models do not take into account mass loss from the disc surface: the matter leaves
the disc only through its inner boundary. In reality, or rather in the current largely
consistent picture of accretion discs, these conditions are satisfied at distances far
from the disc centre.

It is important to note that the accretion process is driven by viscosity caused by
turbulent motions of the matter in the disc. The characteristic time scale for changes
in the radial structure of the disc is called the viscous time scale. The viscous time
scale is related to the radial motion of matter in the disc. In the framework of the
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standard equations for accretion discs, discussed in this section, the characteristic
viscous time scale τvis is much longer than the dynamic time scale τdyn, set by the
orbital velocity of matter in the disc. The viscous time scale is also much longer
than the ‘hydrostatic’ time scale τhyd, on which the thickness of the disc changes
with pressure, and much longer than the ’thermal’ time scale τth, that is, the time
for a given patch of the disc to radiate the stored thermal energy and to change the
temperature:

τvis� τdyn ; τvis� τhyd ; τvis� τth .

As in stars, the disc equilibrium structure depends on its luminosity. For a wide
range of accretion rates, the disc luminosity is proportional to the rate with which
matter flows into the disc. There is, however, a critical luminosity close to which ra-
diation pressure starts to play a decisive role for the formation of the disc structure.
This is the Eddington luminosity limit. Like in stars, the Eddington luminosity is de-
termined from the balance between the forces of radiation pressure and gravitational
forces acting on the proton. In the case of spherical symmetry:

LEdd =
4π cGM mp

σT
≈ 1.25×1038 M

M�
erg/s . (1.1)

We use the following notations: the universal gravitational constant G, the mass of
the central body M, the mass of the Sun M� ≈ 2× 1033 g, the proton mass mp,
the Thomson cross section for electron scattering σT. Using the expression for the
effective luminosity in the accretion process L = ηaccr Ṁ c2, we obtain the critical
accretion rate in the disc ∼ 10−8M�/year:

ṀEdd =
4π GM

cηaccr κT
≈ 1.4×1018 M

M�
g/s ,

where we have set the energy conversion efficiency of accretion ηaccr = 0.1 (ηaccr =
1/12 in the Newtonian metric for a disc with the inner boundary at radius 6GM/c2),
and the Thomson cross section per gram κT ≈ 0.4 cm2/g. In disc models the ac-
cretion rate is often normalised to this value. However, it is only an approximate
evaluation of the accretion rate, above which the disc configuration is determined
by radiation pressure. The thin disc approximation is no longer valid in a region, the
radius of which is proportional to the accretion rate, and this region may experience
outflow of material from the disc surface.

Various disc instabilities may arise at accretion rates lower than the critical one.
For example, at temperatures and densities corresponding to the conditions for re-
combination of ions in the plasma, thermal instability arises which results in a
change in the vertical structure of the disc on thermal time scales (Meyer and Meyer-
Hofmeister 1981). In particular, this instability leads to outbursts in dwarf novae.
Close to the disc centre, if the radiation pressure exceeds the gas pressure, viscous
and thermal instabilities arise (Lightman and Eardley 1974; Shibazaki and Hōshi
1975; Shakura and Sunyaev 1976). Nevertheless, there exists a wide range of ac-
cretion rates at which the structure of the accretion disc can be treated as quasi
stationary.
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1.2 Disc Equations

When examining geometrically thin discs, it is convenient to work in cylindrical
coordinates (r, ϕ , z). We assume that accretion discs are axially symmetric. This
leads to the disappearance of all derivatives with respect to ϕ . For thick discs or for
a study of the structure of outflowing matter, spherical coordinates should be used.

Important Note

In the standard theory of disc accretion, as we outline it here following Shakura
and Sunyaev (1973), the viscous stress tensor is frequently written as a physically
positive value. In Chap. 1 this value appears under notation wt

rϕ =−wrϕ .

Continuity Equation

The continuity equation in cylindrical coordinates in the axial symmetric case
takes the form:

∂ρ

∂ t
+

1
r

∂

∂ r
(ρ vr r)+

∂

∂ z
(ρ vz) = 0 . (1.2)

Equations of Motion

The equations of motion in cylindrical coordinates in the axial symmetric case
are written as:

∂vr

∂ t
+ vr

∂vr

∂ r
+ vz

∂vr

∂ z
−

v2
ϕ

r
=−∂Φ

∂ r
− 1

ρ

∂P
∂ r

+Nr, (1.3)

∂vϕ

∂ t
+ vr

∂vϕ

∂ r
+ vz

∂vϕ

∂ z
+

vrvϕ

r
= Nϕ , (1.4)

∂vz

∂ t
+ vr

∂vz

∂ r
+ vz

∂vz

∂ z
=−∂Φ

∂ z
− 1

ρ

∂P
∂ z

+Nz, (1.5)

where Φ is the gravitational potential, P is the pressure, and Nr, Nϕ , and Nz are the
components of the viscous force NNN per unit mass. We write the components NNN in the
case of axial symmetry as:

ρNr =
1
r

∂

∂ r
(rwrr)−

wϕϕ

r
+

∂wrz

∂ z
, (1.6)

ρNϕ =
1
r2

∂

∂ r
(r2wϕr)+

∂wϕz

∂ z
, (1.7)

ρNz =
1
r

∂

∂ r
(rwzr)+

∂wzz

∂ z
, (1.8)
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where wik are the components of the viscous stress tensor. We write these compo-
nents:

wrr = 2η
∂vr

∂ r
+

(
ζ − 2

3
η

)
divvvv, (1.9)

wrϕ = wϕr = η

[
r

∂

∂ r

(vϕ

r

)]
, (1.10)

wrz = wzr = η

(
∂vz

∂ r
+

∂vr

∂ z

)
, (1.11)

wϕϕ = 2η
vr

r
+

(
ζ − 2

3
η

)
divvvv, (1.12)

wϕz = wzϕ = η
∂vϕ

∂ z
, (1.13)

wzz = 2η
∂vz

∂ z
+

(
ζ − 2

3
η

)
divvvv , (1.14)

where

divvvv =
1
r

∂

∂ r
(rvr)+

∂vz

∂ z
.

Here η is the dynamic coefficient of the shear viscosity due to the relative motion
of different layers of the flow, and ζ is the second viscosity (Landau and Lifshitz
1959). In the following, we will omit the effects of second viscosity.

For thin accretion discs, the only significant component of the viscous stress
tensor is wrϕ . As a result we have that

ρNϕ =
1
r2

∂

∂ r
(r2wrϕ), (1.15)

wrϕ = ηr
∂

∂ r
vϕ

r
= ηr

∂ω

∂ r
, (1.16)

where ω = vϕ/r is the angular velocity of matter in the disc.
We will consider thin stationary discs for which the partial derivatives with re-

spect to time in the equation of motion (1.3—1.5) become zero. For such discs
the most important terms in equation (1.3) are v2

ϕ/r and the gravitational poten-
tial gradient. For a Newtonian gravitational potential Φ = −GM/r, neglecting the
self-gravitation of the disc, we obtain Kepler’s law:

ωK =

√
GM
r3 . (1.17)

In this case the radial component of the friction force and the pressure gradient are
negligible comparing to the gravitational force from the central body.

In the direction perpendicular to the disc plane, hydrostatic equilibrium is estab-
lished, in which the vertical gravity component is balanced by the vertical pressure
gradient. From (1.5) we have:
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− 1
ρ

∂P
∂ z

=
GM
r3 z . (1.18)

Energy Conservation Equation

The energy conservation equation for the general case is written in the following
way (Landau and Lifshitz 1959; Kato et al 2008):

∂E
∂ t

+div
[
(E +P)vvv− (vvvwik)+FFF th

]
= ρεmass , (1.19)

where E = ρ (e+ v2/2+Φ) is the sum of the thermal, kinetic and potential energy
per unit volume. Its change over time is a result of the energy flux arising due to
motion of the medium, the work of pressure and viscosity forces, and other possible
energy flows. In a thin plane disc, the energy flux connected to viscous forces is
radial and equals (−vϕ wrϕ). The vector FFF th contains other types of thermal energy
flows: radiative, conductive and convective. In a thin disc the main contribution is
given by Fz, which includes the radiative flux transferring energy to the radiating
disc surface. In general, there could be other heating or cooling mechanisms op-
erating within a unit volume (for example, nuclear reactions, Joule dissipation or
radiative cooling of the optically thin medium). The rate of such heating or cooling
per unit mass is εmass.

Energy Dissipation

Let us consider the change of kinetic energy in the flow expressing the total
velocity derivative with the help of the Navier-Stokes equation (equations (1.3)–
(1.5)):

d
dt

(v2

2

)
= vvv
(
−∇Φ− 1

ρ
∇P+NNN

)
. (1.20)

Subtracting this equation from the equation for the total energy conversion (1.19)
and using the first law of thermodynamics

T ds = de+Pd
(

1
ρ

)
,

where s is the specific entropy, we arrive at the following equation for the thermal
balance:

ρ T
ds
dt

= ε +ρ εmass−divFFF th , (1.21)

for a gravitational potential Φ constant in time, where

ε = wik
∂vi

∂xk
(1.22)
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is the dissipated energy per unit volume per unit time due to viscosity (summation
over indices).

In cylindrical coordinates for an axisymmetric flow:

ε = η

[
4
(

∂vr

∂ r

)2

+2
(

∂vz

∂ z

)2

+

(
∂vϕ

∂ r
− vϕ

r

)2

+

(
∂vϕ

∂ z

)2

+

+

(
∂vz

∂ r
+

∂vr

∂ z

)2 ]
− 2

3
η

(
∂vrr
r∂ r

+
∂vz

∂ z

)2

. (1.23)

In thin accretion discs, vϕ dominates significantly over other velocity terms. We
note that vϕ does not change with z in a thin disc. Thus, the dominant component in
the energy dissipation has the form:

ε = wrϕ

(
∂vϕ

∂ r
− vϕ

r

)
= η

(
∂vϕ

∂ r
− vϕ

r

)2

= η r2
(

∂ω

∂ r

)2

. (1.24)

Energy Source in the Disc

The main source of energy which dissipates in the disc due to friction, and which
in principle can be radiated, is the released potential energy as the matter moves
progressively closer to the gravitating body. Let us illustrate this for a thin Keplerian
disc.

With the help of expressions (1.7), (1.10) and (1.24), it can be shown that the
identity

ρ vϕ Nϕ + ε =
1
r

∂

∂ r
(r vϕ wrϕ) . (1.25)

holds in a thin disc.
To write down ρ vϕ Nϕ , we use (1.20). Let the mass of the central object and its

gravitational potential be constant in time. We have:

ρ vr
∂

∂ r

(v2

2
+Φ

)
=

1
r

∂ (r vϕ wrϕ)

∂ r
− ε. (1.26)

Here, we omit the term vr ∂P/∂ r, which is small compared to the other terms, i.e.
we neglect the work performed by pressure forces in a Keplerian disc.

And thus, the energy from the gravitational interaction extracted as the matter
moves in the disc progressively towards the centre is transformed to kinetic energy
of orbital motion, then redistributed in the disc due to viscous forces transferring an-
gular momentum, and finally spent on heating of the disc (Lynden-Bell and Pringle
1974; Shakura and Sunyaev 1976).
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1.3 Viscosity in Accretion Discs

The key hypothesis in models for accretion discs is the turbulent nature of
their viscosity (Shakura 1973; Shakura and Sunyaev 1973; Zeldovich 1981; Frid-
man 1989; Dubrulle 1993; Balbus and Hawley 1998; Richard and Zahn 1999;
Bisnovatyi-Kogan and Lovelace 2001; Marov and Kolesnichenko 2011). The val-
ues of the coefficients of molecular viscosity obtained from studies of the properties
of liquids and gases cannot explain the observed properties of astrophysical discs.
The required rate of transfer of mass towards the disc centre and the accompany-
ing outward transfer of momentum can be explained only for very high values of
viscosity in the disc matter, exceeding the molecular viscosity by several orders of
magnitude. Turbulent motions of the matter may lead to significant stresses wrϕ in
the disc. In addition, the Reynolds number for accretion discs is very large and this
in itself may serve as a basis for development of turbulence regardless of the specific
mechanisms for it occurrence.

Differential rotation in Keplerian gaseous discs is considered the basic source
of their turbulence. The angular momentum transfer by small-scale magnetic fields
in accretion discs was suggested in Shakura and Sunyaev (1973). In the late 1950s
and early 1960s, E. P. Velikhov (1959) and S. Chandrasekhar (1960) discovered
the MHD-instability in shear flows with angular velocity falling outwards in the
existence of a seed poloidial magnetic field. The importance of this instability for
accretion discs was shown in the calculations by Balbus and Hawley (see the reviews
by Balbus and Hawley (1991, 1998)). Disc accretion with the presence of magnetic
fields was studied by many authors (see, for example, Eardley and Lightman (1975);
Galeev et al (1979); Coroniti (1981); Tout and Pringle (1992); Brandenburg et al
(1996)).

At the present stage of development of theories of accretion discs, there is no
full consensus regarding how to express viscous stresses in a viscous flow. Most
authors describe the action of a small scale viscosity by a phenomenological α-
prescription (Shakura 1973; Shakura and Sunyaev 1973).

In Sect. 1.2 it was assumed that the derived equations describe the average large-
scale motions in the gas. Turbulence arises as a result of transfer of part of the
energy of the large-scale motions to random perturbations on smaller scales. In gen-
eral, such chaotic perturbations in the flow have a very complicated structure and
an individual description does not seem possible. Numerical solutions to the asso-
ciated non-linear equations cannot be achieved at present due to the unreasonably
large computational power needed for such a task, and an analytical solution to the
general spatially-unbounded problem with smooth initial conditions have not been
found either. A solution to the Navier-Stokes equations is one of the seven Mil-
lennium Goals announced in 2000 by the Clay Mathematical Institute. In applied
problems, methods based on various approximations are mainly used, for example
the Reynolds method of averaging or large-eddy simulations (Deardorff 1970).
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1.3.1 The Reynolds Equations and the Reynolds Tensor

Reynolds suggested a decomposition of the hydrodynamic fields in the real
medium into two components: an average field and a fluctuating (chaotic) field,
followed by an averaging of the equations. For example, for the velocity compo-
nents we assume vi = vi +v′i, for the pressure p = p+ p′, etc. The average fields are
always smooth and slowly changing. The fluctuating fields are chaotic in both space
and time. Note that elsewhere in this chapter, we will use ρ without a bar for the
local averaged density of the turbulized matter.

Averaging the Navier-Stokes equations according to the rules suggested by
Reynolds leads to equations of motion for the average quantities — the Reynolds
equations. The method of averaging is not very important. It may be over time, in
space, or it may be a theoretical average over a statistical ensemble of various hy-
drodynamic flows with common boundary conditions (Monin and Yaglom 1971).
Average quantities over space and time converge to theoretic-probabilistic mean
values if the random process is stationary and spatially homogeneous. The second
condition is always a mathematical idealization. In practice, we can only talk about
homogeneity in some limited space and time domain. The general condition for con-
vergence of the values that are averaged over space and time to probabilistic mean
values is the condition of ergodicity.

Let us write down the Navier-Stokes equation in tensor notation:

ρ

(
∂vi

∂ t
+ vk

∂vi

∂xk

)
= fi−

∂ (Pδik)

∂xk
+

∂wik

∂xk
, (1.27)

where fi are the components of an external force acting on a unit volume of matter.
For an incompressible fluid (ρ = const) we use the equalities

∂vk

∂xk
= 0 and

∂ (vivk)

∂xk
= vk

∂vi

∂xk
,

in particular, replacing the second term on the left in (1.27) with ∂ (vivk)/∂xk.
We perform averaging according to the Reynolds rules (Monin and Yaglom

(1971), their chapter 2), part of which looks like the following:

f ′ = 0 ,
∂ f
∂x

=
∂ f
∂x

, vi · vk = vi · vk + v′i · v′k .

The average mass transfer due to turbulent motions is zero: ρ v′i = 0.
In the Reynolds-averaged Navier–Stokes equation, we find the appearance of an

additional term dependent on the pulsating velocity (with a prime) arising due to the
non-linearity of the original equation:

ρ

(
∂ vi

∂ t
+

∂ vivk

∂xk
+

∂ (v′iv
′
k)

∂xk

)
= fi−

∂ (Pδik)

∂xk
+

∂wik

∂xk
.
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To find out the meaning of the last term, we consider the average flow of momentum:

Πik = Pδik +ρ vivk− (wik−ρ v′iv
′
k) . (1.28)

The two first terms on the right-hand side are responsible for the reversible (me-
chanical) transfer of momentum by the average motion.

We see that for turbulent motion, the viscous tensor, dependent on the properties
of the medium, is accompanied by the term connected with chaotic flows. Thus,
turbulent motions lead to exchange of momentum between different regions of the
fluid. In other words, turbulent mixing acts like viscosity. The following way of
writing the Reynolds equations emphasizes this interpretation:

∂ vi

∂ t
+ vk

∂ vi

∂xk
=

fi

ρ
− 1

ρ

∂ (Pδik)

∂xk
+

∂

∂xk

(
η

∂vi

∂xk
− v′iv

′
k

)
. (1.29)

Here, we use the expression for the viscous stress tensor in an incompressible fluid
wik = η (∂vi/∂xk + ∂vk/∂xi) (see, for example, Chapter 2 in Landau and Lifshitz
(1959)) and apply the incompressibility condition of the fluid.

The quantity
Rik =−ρ v′i v′k (1.30)

is called the Reynolds tensor for turbulent viscosity. The form of this term is un-
known and we should make more or less empirically based assumptions to solve the
Reynolds equations. The main problem of the phenomenological theory of turbu-
lence is finding the unknown turbulent flows (flow of momentum for the equations
above) expressed in the averaged parameters of the properties of the medium. This
problem is referred to as a closure problem.

Compressible Fluids

In the case of a compressible fluid, instead of the Reynolds average, the weighted
average as suggested by Favre (1969) is used. The weighted average velocity is
equal to ṽi = ρ vi/ρ , where bars over the values indicate the Reynolds average (time
average). The velocity of the flow is then represented by the sum of the weighted
average and the fluctuating velocities: vi = ṽi + v′′i . Now v′′i 6= 0 (average over the
ensemble) for ṽ′′i = 0 (weighted average, average over the ensemble), but, as before,
the turbulent motions do not lead to transfer of mass, ρv′′i = 0 (see, for example,
Marov and Kolesnichenko (2011), their chapter 3).

After such a representation of the hydrodynamic functions and averaging over
time of the Navier-Stokes equation for ρ 6= const, we arrive at an equation of mo-
tion, which also can be written in compact form, analogous to (1.29), but with an
additional term, which corresponds to the turbulent viscosity, of a more complicated
form:
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R∗ik =−ρv′′i v′′k +η

(
∂v′′i
∂xk

+
∂v′′k
∂xi
− 2

3
δik

∂v′′k
∂xk

)
. (1.31)

We ignore here fluctuations in the coefficient of molecular viscosity η . Thus, if
density fluctuations are present in the medium, the viscosity tensor cannot be divided
into two constituents, one dependent on the properties of the environment only (the
viscosity η and the average velocity vi of the laminar flow) and the other dependent
only on the turbulent dynamics of the flow (terms with fluctuating velocity). It is
expected, however, that the second term in the last expression, the term that includes
the molecular viscosity, is significantly smaller than the first term (Pletcher et al
1997).

1.3.2 The Closure Problem

The form of the Reynolds tensor cannot be found from the hydrodynamic equa-
tions. The second-order moment tensors for the velocity field v′i v′k can be expressed
from the third- or higher-order moments (v′i v′j v′k, etc.), but the number of unknowns
is always greater than the number of equations. The impossibility of finding a closed
system of equations for a finite number of moments is a consequence of the non-
linearity of the equations of hydrodynamics. In the case of weighted averaging, the
problem becomes even more complicated (Marov and Kolesnichenko (2011), their
chapter 3).

The need to solve practical problems have led to the performance of a large num-
ber of experiments regarding turbulent flows. Based on these studies, semi-empirical
theories of turbulence have been worked out, which systematize the obtained results.

Important steps in this direction were taken by Boussinesq (in the end of the
19th century) and by Taylor, Prandtl and Karman in the 1920s and 1930s. The semi-
empirical models of turbulence are based on the analogy between turbulence and
molecular viscosity. An application of the simplest models allows us to close the
very first equations for hydrodynamic fields - the ones for lower moments (the
Reynolds equations). As a result, the Reynolds equations can be solved if Rik is
expressed from certain large-scale characteristics of the flow. These characteristics
describe the transfer of heat and momentum through the turbulent medium. Large-
scale characteristics of turbulence are to a great deal dependent on the geometry of
the boundaries of the flow and the nature of external influences, which are always
different in different situations. Therefore, on the one hand, we talk about the am-
biguity of semi-empirical closing relations. On the other hand, using more complex
closing relations leads to neither more general nor more exact solutions. Thus, in
most cases, preference is given to the simpler models, and the limits to their appli-
cability are studied (see Marov and Kolesnichenko (2011), their Sect. 1.1.6).
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1.3.3 Coefficient of Turbulent Viscosity

The Reynolds equations can be solved only with the addition of closing rela-
tions, which use the averaged characteristics of the turbulent flow (pressure, den-
sity, temperature, and average velocity). This is the way semi-empirical models for
turbulence are constructed. Most of these models are based on Boussinesq’s gradi-
ent hypothesis (1897) which suggests that there is a linear connection between the
turbulent viscous tensor and the shear tensor which in turn is a linear combination
of the terms ∂ v̄ j/∂xi together with certain local proportionality coefficients (coeffi-
cients of turbulent transfer). It is, however, necessary to make concrete assumptions
regarding these coefficients.

Fig. 1.1 Coordinates in a plane flow.

Let us consider a small area inside a turbulent flow (Fig. 1.1). We consider this
area to be flat and assume that the average motion is directed along the plane of
the area (along the x-axis). Let the area be located in the plane z = 0. The frictional
force acting on a unit area, directed along the x-axis is equal to:

wxz−ρ v′xv′z = ρ ν
∂vx

∂ z
−ρ v′xv′z .

According to what is called Bussinesq’s gradient hypothesis, there is an analogy
between the viscous and the turbulent flow of momentum and we may set:

−ρ v′xv′z = ρ νt
∂vx

∂ z
, (1.32)

introducing the proportionality constant νt. This approach allows us to solve the
Reynolds equations using standard methods if we know the kinematic coefficient of
turbulent viscosity νt that replaces the usual coefficient of molecular viscosity. The
turbulent viscosity coefficient cannot be derived from microscopic considerations.

The gradient model works well for quasi-stationary flows. It is assumed that a
local equilibrium is formed in the structure of developed turbulence, in which the
characteristics of turbulence at every point of the flow are completely determined by
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the local characteristics of the field of the averaged flow in the vicinity of this point
and by the local averaged parameters of the state of the medium itself.

In general, νt is significantly larger than ν . The turbulent viscosity coefficient, as
opposed to the molecular viscosity coefficient, does not describe the physical prop-
erties of the fluid but the statistical properties of the fluctuations. Its value depends
on the method of averaging over the ensemble of analogous flows. A semi-empirical
model of turbulence can be constructed if νt is estimated in the course of experi-
ments. For example, it is known that in the case of motion of a turbulent flow in a
plane channel, νt cannot be constant since it has been established empirically that
νt → 0 close to the walls. In an infinite turbulent flow, however, it is often quite
reasonable to assume that νt = const (see Sect. 5.8 in Monin and Yaglom (1971)).

And thus, we moved from the unknown Reynolds tensor to the turbulent viscos-
ity coefficient, which is also unknown. Choosing this parameter is another separate
task and, to solve it, other semi-empirical theories have been proposed in turn. These
theories, in particular, use the concept of mixing length. This concept plays an im-
portant role in the theory of turbulent viscosity in accretion discs.

1.3.4 Mixing Length

The concept of mixing length introduced by Prandtl to the theory of turbulence
(1925) allows us not only to express simply the coefficients of turbulent mixing (in
particular, the turbulent viscosity coefficient), using the length of the mixing path,
but also to obtain defining relations for turbulent flows in some particular cases. The
mixing length is the distance which a unit volume of gas travels in a turbulent flow
before this volume is mixed completely with the surrounding medium. This distance
is in a sense analogue to the mean free path in kinetic gas theory.

Turbulent stresses are the result of transfer of momentum due to fluctuations of
turbulent velocity. Prandtl’s hypothesis is that vortices, shifting as ‘trickles’ along
the z-axis for the path of the ‘mixing length’ ξ ′z , retain their momentum. This is
similar to the picture of turbulent diffusion of impurities. At the height z+ ξ ′z , a
fluctuation v′x may be represented as the difference between the proper velocity
of a trickle vx(z) (the average velocity at the initial level) and the velocity of the
surrounding flow vx(z+ ξ ′z). Linearization of the profile of the average velocity vx
yields: vx(z+ξ ′z) = vx(z)+ξ ′z ∂vx/∂ z. We thus write the Prandtl relation for transfer
of momentum as:

v′x =−ξ
′
z ∂vx/∂ z . (1.33)

In the case of a plane shear flow, we get for the component of the Reynolds tensor
(1.30):

Rxz ≡−ρ v′x v′z = ρ ξ ′z v′z
∂vx

∂ z
. (1.34)

If we define the kinematic coefficient of turbulent viscosity as
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νt = ξ ′z v′z , (1.35)

formula (1.34) is terminologically consistent with the gradient hypothesis (See ex-
pression (1.32)). Formula (1.35) is similar to the formula for the molecular viscosity
coefficient: ν = lmvm, where lm is the mean free path of the molecules and vm is the
velocity of their thermal motion. The ‘amount of exchange’ in a turbulent flow νt is
also a product of the distance and velocity at which turbulent exchange takes place
— the mixing speed. The value of ξ ′z is essentially a random (fluctuating) quantity.

In order for formula (1.34) to be applied in practice, the mixing speed v′z should
also be estimated, which Prandtl does (1925). As a result of mixing, the mixing
speed itself should decrease as the conditions (velocities) in the medium are leveled
out. From this follows the assumption that the mixing speed should be proportional
to the velocity gradient of the average motion ∂vx/∂ z. This simultaneously means
that the fluctuations of velocity in different directions have similar absolute values,
i.e. v′z ∼ v′x (Monin and Yaglom 1971).

We thus use (1.33), substituting in (1.34), and obtain:

Rxz = ρ (ξ ′z)2
∣∣∣∂vx

∂ z

∣∣∣ ∂vx

∂ z
,

where the modulus is inserted in order that the sign of the turbulent viscosity tensor
be the same as for ∂vx/∂ z. This corresponds to the fact that momentum is transferred
from layers moving faster to those moving more slowly. Then for the kinematic
coefficient of the turbulent viscosity we obtain the Prandtl formula (1925) :

νt = α
∗L2
∣∣∣∂vx

∂ z

∣∣∣ , (1.36)

where α∗ is a dimensionless quantity of the order of 1. The local mixing path ξ ′z is a
too uncertain quantity and cannot be measured. Here, the distance L, or the mixing

length, is already not a random quantity. Its magnitude is of the order of
√
(ξ ′z)2 and

characterizes the scale of turbulence. Now, what is left is to establish the dependence
of L on the coordinates, for example, empirically.

The expression (1.36) may also be retrieved from dimensional considerations.
For this we use the principle of local similarity of turbulent transfer (Sect. 3.3 in
Marov and Kolesnichenko (2011)), — the coefficients of turbulent transfer in each
point depend only on the properties of the medium in this point, the local size of
the scale of turbulence L and on certain characteristics of the averaged flow. In other
words, νt is a function of the quantities ν , L, and ∂vx/∂ z. The scale L characterizes
the geometry of the turbulent flow or the characteristic size. Far away from the
hard surface, ν can be excluded from the list of parameters, and the dimensional
considerations yield the Prandtl formula (1.36).

The constant factor α∗ is determined for each specific type of motion on the basis
of experimental data.
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1.3.5 Turbulent Viscosity Parameter α

Let us consider an accretion disc, with orbital motion in circular orbits and orbital
velocities in the plane parallel to the disc symmetry plane. Placing an imaginary wall
perpendicular to the radius in a given point at a distance r? from the centre, we find
the frictional force applied per unit area of the wall.

The averaged velocity of matter in the disc is tangential to the radius with great
accuracy since the orbital velocity dominates over other components. Let the imag-
inary wall rotate around the centre with the averaged velocity of the flow. The fric-
tional force is directed tangentially and is equal to the density of the flow of the
ϕ-component of momentum in the radial direction. If we assume, as mentioned in
Sect. 1.3.1 after formula (1.31), that the first term in the turbulent viscosity tensor,
defined only by the dynamics of the flow, dominates over the others, which contain
the molecular viscosity coefficient η , then the rϕ-component for the frictional stress
on the wall is equal to

(wrϕ −ρ v′′r v′′ϕ) r=r? = (ρ ν r
dω

dr
−ρ v′′r v′′ϕ) r=r? ,

where we used the expression for the component of the stress tensor in cylindrical
coordinates (see Chapter 2 in the book by Landau and Lifshitz (1959)).

According to common practice, we will define wt
rϕ as the quantity with oppo-

site sign to the component of the viscous stress tensor in the disc wrϕ .1 Using the
gradient hypothesis (see Sect. 1.3.3 and (1.32)) we can write:

wt
rϕ ≡ ρ v′′r v′′ϕ =−ρ νt r

dω

dr
, (1.37)

where νt is the kinematic coefficient of the turbulent viscosity [cm2/s]. For a Keple-
rian disc, we get from (1.37):

wt
rϕ =

3
2

ωK νt ρ . (1.38)

As a consequence of the Prandtl hypothesis (1.35), νt = vt lt , where vt and lt
are the velocity and length of turbulent mixing, respectively, which both take ran-
dom values in a turbulent flow.2 Applying the Prandtl relation to describe the radial
transport of turbulent velocity

vt = lt r
∣∣∣∣dω

dr

∣∣∣∣
(cf. (1.33)), we get, substituting in (1.37), that

1 With this definition, wt
rϕ will be positive in accretion discs. In other literature on the subject, the

definition trϕ =−wt
rϕ is often used instead.

2 They are analogous to the quantities v′x and ξ ′z discussed in Sect. 1.3.4.
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wt
rϕ = ρ v2

t ≡ m2
t ρ v2

s ,

where the averaged turbulent velocity squared (fluctuating component of the veloc-
ity of matter in the disc) v2

t is expressed using the sound speed vs and the Mach
number m2

t = v2
t /v2

s .
The last formula can be rewritten as

wt
rϕ = αP , (1.39)

where the dimensionless quantity α is called the turbulent parameter and P is the
total pressure (the sum of gas and radiation pressures).

Disc models, in which turbulence is taken to be the source of viscosity and where
the connection (1.39) is used, are called α–discs. In the simplest models, this coef-
ficient is considered fixed within the whole accretion disc. Its value may be found
from a comparison with observations of transient phenomena, which are manifesta-
tions of viscous evolution of discs in the case of non-stationary accretion onto space
objects.

Equating (1.38) to the quantity αρ v2
s , we obtain a relation between the dimen-

sionless turbulence parameter and the kinematic viscosity coefficient in a Keplerian
disc:

νt =
2
3

α v2
s

1
ωK

=
2
3

α vs zhyd , (1.40)

where we introduce the ‘hydrostatic half-thickness’ of the disc, which can be found
from approximate integration of (1.18):

zhyd ≡
√

p
ρ

1
ω2

K

=
vs

ωK
.

Using (1.35), which is a consequence of the Prandtl hypothesis, we may write:

α =
vt lt

2
3 vs zhyd

.

From general considerations it is clear that the α-parameter is a quantity whose
value does not exceed unity. Indeed, if the turbulent motions have velocities ex-
ceeding the sound speed, these motions are quickly quenched by shock-waves. The
inequality lt > zhyd would suggest that the turbulence has an anisotropic character
since the transverse thickness of the disc is limited by the quantity ∼ zhyd.

The use of the α-parameter is justified in situations where it may be consid-
ered approximately constant. As proved during the last decades, such an approxi-
mation describes well a variety of observed phenomena in sources with disc accre-
tion. Numerical modelling of outbursts in dwarf novae and X-ray transients demon-
strates that the α-parameter can be considered constant for certain ranges of phys-
ical conditions in these astrophysical discs. Typical values from observations are
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10−2− 1 (Meyer and Meyer-Hofmeister 1984; Cannizzo 1998; Kotko and Lasota
2012).

1.4 Thin Discs

1.4.1 Equations of Radial Structure

Let us write down the equations for disc accretion for geometrically thin α–
discs. We will neglect any dependence of the physical parameters in the disc on
z, averaging (integrating) along the vertical. We will consider discs without radial
advection (transfer of heat with matter moving radially) and without mass loss from
the disc surface. In such discs, the angular velocity of the rotating matter at each
radius r is approximately equal to the angular rotational velocity of a free particle.
In other words, vr� vϕ .

The parameters determining the structure of a geometrically thin disc are the
mass of the gravitating centre M, the inner radius of the accretion disc rin and the
accretion rate Ṁ.

Mass Conservation Equation

We introduce the surface density

Σ0(t,r) =
∫ +z0

−z0

ρ(t,r,z)dz , (1.41)

where z0 is the disc half-thickness at radius r. As agreed earlier, the velocities in
thin discs are independent of z. Integrating (1.2) along the disc height, we obtain:

∂Σ0

∂ t
=−1

r
∂

∂ r
(Σ0 vr r) . (1.42)

The product within parentheses on the right-hand side of this equation, multiplied
by 2π , is equal to the radial flow of the matter in the disc [g/s] through a cylindrical
surface with radius r.

The r–Component of the Equation of Motion

For a thin stationary disc, the dominant terms in this equation are

v2
ϕ

r
=

∂Φ

∂ r
. (1.43)
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For a Newtonian potential, this equation corresponds to Kepler’s law:

ωK =

√
GM

r3/2 .

Other potentials that take into account the curvature of space around a Schwarzschild
black hole are discussed in Sect. 1.4.4.

The ϕ–Component of the Equation of Motion

After multiplying by ρ r2, we integrate vertically (1.4) and obtain the law of
conservation of the angular momentum

Σ0 vr r
∂ (ω r2)

∂ r
=− ∂

∂ r
(Wrϕ r2) , (1.44)

where

Wrϕ(t,r) =
∫ +z0

−z0

wt
rϕ(t,r,z)dz (1.45)

is the height-integrated component of the viscous stress tensor.

1.4.2 Solution for a Constant Accretion Rate

From the continuity equation (1.42) it follows that in the stationary regime

Σ0 vr r = const .

We determine the accretion rate as the mass of matter intersecting the surface of a
cylinder with radius r per unit time:

Ṁ ≡−2πr vr Σ0 . (1.46)

The minus sign is inserted in order to make a quantity Ṁ positive and to compensate
for the fact that as matter moves towards the centre, vr < 0.

For a constant accretion rate, the equation of motion (1.44) can be easily inte-
grated:

Ṁ ω r2−2π Wrϕ r2 = const . (1.47)

This is the law of conservation of angular momentum for a stationary disc. The
constant can be determined from the boundary conditions at the inner edge of the
disc:

Ṁ (h−hin) = F−Fin,
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where F is the momentum of viscous forces between adjacent rings of the disc (the
viscous torque, a positive quantity in our notation)

F = 2π Wrϕ r2 , (1.48)

and h = ω r2 is the specific angular momentum, where the subscript indicates quan-
tities at the inner disc radius.

The equation of conservation of angular momentum can be written in the form:

Wrϕ =
Ṁ ω

2π
f (r) or F = Ṁ h f (r) , (1.49)

where the function f (r) = 1− hin/h+Fin/(Ṁ h) contains information about inner
boundary conditions for the viscous stress tensor (the form of f (r) at Ṁ(r) 6= const,
see Section 1.5.3). For example, in the case of black holes, the viscous stress tensor
is set to zero since the inner radius of the disc is determined by the radius of the
last stable orbit, from which matter falls freely onto the black hole. Then, far away
from the inner radius, f (r) ≈ 1. For accretion onto a magnetized star, the stress
tensor at the inner edge of the disc depends on the strength of the magnetic field and
its radial distribution changes accordingly. For central objects with a sufficiently
strong magnetic field, accretion may seize at the inner radius of the disc. Such discs
are called disc reservoirs (Syunyaev and Shakura 1977). In a disc reservoir F is
radially constant close to the inner boundary, and at large radii F is affected by the
conditions at the outer boundary.

1.4.3 Radial Velocity of Matter in the Disc

Let us estimate the radial component of the velocity of matter in a disc in the
stationary regime from the ϕ–component of the equation of motion. For this, we
use (1.49) in the approximation f (r) ∼ 1, which is valid in the quasi-stationary
case, far away from the centre, and definition of accretion rate (1.46):

|vr|=
Ṁ

2π r Σ0
=

Wrϕ

ω r Σ0
.

Obviously, this velocity, with which matter approaches the gravitating object, de-
pends on the value of the viscosity. We use the formula (1.38) and obtain:

|vr|=
3
2

νt

r
, (1.50)

where Wrϕ ≈ 2z0 wt
rϕ and Σ0 ≈ 2z0 ρ (cf. (1.41), and (1.45)).

The characteristic time scale for movement of the matter radially towards the
centre is
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τvis ∼
r
|vr|

=
2
3

r2

νt
.

Making an assumption regarding the α-viscosity in the disc and using the relation
(1.40) between νt and α , we re-write the obtained formulas in the form:

|vr|= α vs
z0

r
= α vϕ

( z0

r

)2
, (1.51)

τvis =
1

α ωK

( z0

r

)−2
. (1.52)

In a geometrically thin disc, the viscous time scale is much larger than the cha-
racteristic dynamic time scale

τdyn ∼
r

vϕ

∼ 1
ωK

. (1.53)

1.4.4 Accretion onto a Black Hole

In Chap. 3, devoted to relativistic standard discs, a theory will be presented, the
basics of which were worked out by Novikov and Thorne (1973). For further ac-
quaintance with the astrophysical aspects of this theory we also recommend the
books by Shapiro and Teukolsky (1983); Thorne et al (1986). Here, we outline only
the basics of the behavior of an accretion disc around a black hole.

Close to the black hole the curvature of space-time plays a crucial role for the
formation of an accretion disc. The thin-disc approximation, according to which
matter rotates in approximately circular orbits, breaks down. The flow of matter
onto the black hole speeds up, becomes highly supersonic in the radial direction
and, starting from some certain radius, goes in the free-fall regime.

At free fall, the momentum of the in-falling matter is conserved. In this case,
there is no outward flux flow of the viscous tensor, implying that it is equal to zero
at the disc inner boundary: Fin =Wrϕ r2

in = 0. This condition is confirmed by nu-
merical one-dimensional calculations of the equations of hydrodynamics in a post-
Newtonian potential (Shafee et al 2008). It turns out that the conditions for the
viscous stress tensor to be equal to zero are satisfied close to the innermost stable
circular orbit.

For non-rotating black holes, the radius of the innermost stable circular orbit
rISCO = 3Rg, where the Schwarzschild radius Rg is the event-horizon radius of a
non-rotating black hole:

Rg = 2GM/c2 .

The radius rISCO for a rotating black hole is determined in the Kerr space-time metric
and given by formula (3.22) in Sect. 3.1.3.
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At radii less than 3Rg, there is no energy release due to viscosity. We note that in
this area radiation may be generated as a result of processes which involve plasma
and magnetic fields.

Thus, for accretion onto a Schwarzschild black hole, the boundary condition at
the inner radius is written as

Wrϕ(r = 3Rg) = 0 .

We use equation (1.47) for Ṁ = const in the form

Ṁ(ωin−ω) = 2π Wrϕ ,

or, for the viscous torque,
F = Ṁ(h−hin) , (1.54)

where hin is the specific angular momentum of the matter at the innermost orbit
around the black hole.

If the viscous stress tensor is equal to zero at the inner boundary of a stationary
infinite disc, the function in (1.49) is:

f (r) = 1−hin/h(r)+Fin/(Ṁ h) = 1−hin/h(r). (1.55)

In the Newtonian approximation, f (r) = 1−
√

rin/r and

Wrϕ =
Ṁ ω

2π
(1−

√
rin/r) .

To approximately take into account the effects of general relativity in the vicinity
of non-rotating black holes, the Paczynski–Wiita potential can be used (Paczynsky
and Wiita 1980):

ΦPW =− GM
r−Rg

. (1.56)

For free particles in circular orbits, the velocities can be found from (1.3):

v2
ϕ

r
=

dΦ

dr
. (1.57)

As a result, we obtain
vPW

ϕ

c
=

1√
2

√
r Rg

(r−Rg)
,

and the specific angular momentum of a test particle in the Paczynski-Wiita potential
is:

hPW = vPW
ϕ r =

√
GM r

(1− 2GM
c2 r )2

. (1.58)

The modified potential (1.56) is often used (for example when substituting into
(1.43)) since it fits quite well the curvature effects of the space-time metric around
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a Schwarzschild black hole. Other approximate potentials, in particular such ap-
plicable to the case of rotating black holes, can be found in the book by Kato et
al. (1998).

Let us write down the Schwarzschild stationary metric as the square of the inter-
val between two events separated in time and space

ds2 =−(1−Rg/r)dt2 +(1−Rg/r)−1 dr2 + r2(dθ + sin2
θ dϕ) .

Here, t, r, θ , ϕ are the Schwarzschild coordinates. Due to the curvature of space-
time near a black hole, the distance element dl along the radius, as measured by a
local observer, is longer than the corresponding coordinate element dr (see Fig. 1.2):

dl =
dr√

1−Rg/r
.

Fig. 1.2 Illustration of the ‘shrinking’ of a coordinate element dr, corresponding to an element of
distance dl, measured by a stationary observer.

To describe the relativistic motion in the vicinity of a Schwarzschild black hole,
we may use the following ‘logarithmic’ potential (Landau and Lifshitz 1973; Thorne
et al 1986; Abramowicz 2016):

Φ =
c2

2
ln
(

1− Rg

r

)
= c2 ln

√
1− Rg

r
. (1.59)

Here
√

1−Rg/r is the lapse function in the Schwarzschild metric. It determines
the redshift of the signal emitted from the vicinity of the black hole and the differ-
ence between two time intervals, one of which, dt, is measured at infinity and the
other, dτl , by an observer in the local stationary reference frame:

dτl/dt =
√

1−Rg/r . (1.60)

The time measured in the frame of moving particle is related to the time measured
by the local stationary observer as
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dτp/dτl =
√

1− v2/c2 . (1.61)

The momentum ppp and the energy Elocal of a relativistic particle with rest mass mo
relative to the local stationary observer are

ppp =
mo vvv√

1− v2/c2
, and Elocal =

mo c2√
1− v2/c2

,

respectively, where v2 = v2
r + v2

ϕ for particles moving in the equatorial plane. We
may also introduce the notion of ‘energy at infinity’ E. This value remains un-
changed along the particle trajectory. Let us determine it.

Consider a particle travelling past a stationary observer who is located at a dis-
tance r from the centre of a black hole. The equation of particle motion in the refer-
ence system of this observer looks as follows:

dppp
dτl

=− mo√
1− v2/c2

∇∇∇Φ . (1.62)

Note that the potential Φ is spherically symmetric. On multiplying Eq. (1.62) by vvv,
we obtain

vvv
d

dτl

(
movvv√

1− v2/c2

)
=− mo vvv√

1− v2/c2
∇∇∇Φ =− mo vvveeer√

1− v2/c2

dΦ

dl
, (1.63)

where eeer is a unit radial vector in the Cartesian reference system of the local ob-
server. Further, we differentiate the left-hand side of (1.63):

1
2

mo√
1− v2/c2

dv2

dτl
+

1
2

mo v2/c2

(1− v2/c2)3/2

dv2

dτl
=− mo vvveeer√

1− v2/c2

dΦ

dl
.

When multiplying this by (1− v2/c2)3/2, cancelling out the two equal terms with
opposite signs in the left-hand part of the equation and using the equality vr = dl/dτl
for the radial velocity, we obtain

1
2

d
dτl

(1− v2/c2) = (1− v2/c2)
dl
dτl

d
dl

ln(1−Rg/r)1/2 ,

which is equivalent to the following equation

d
dτl

ln(1− v2/c2) =
d

dτl
ln(1−Rg/r) .

Finally, we obtain the following relationship:

(1−Rg/r)
/
(1− v2/c2) = const.
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Hence, the value

E =
mo c2√

1− v2/c2

√
1− Rg

r
= Elocal

√
1− Rg

r
= const , (1.64)

does not change for a freely moving particle, while the locally measured energy
Elocal varies in the gravitational field of the black hole. This value E is termed
‘energy-at-infinity’ (Thorne et al 1986). For a photon, the rest mass of which is
mo = 0, Eq. (1.64) yields the relation between its frequency in the reference system
of the local observer νo and its frequency detected at infinity ν∞ = νo

√
1−Rg/r,

describing the redshift effect.
In the non-relativistic approximation, the expression for the energy EN of the

particle has the well-known form

E−mo c2 = EN = mo v2/2−mo GM/r .

Let us now determine the components of the particle velocity in the equatorial
plane. A freely moving particle with mass mo keeps its angular momentum un-
changed

hp =
mo vϕ r√
1− v2/c2

. (1.65)

When taking into consideration that v2 = v2
r + v2

ϕ , Eqs. (1.64) and (1.65) yield

v2
r

c2 = 1− m2
o c4

E2

(
h2

p

r2 m2
o c2 +1

)(
1− Rg

r

)
. (1.66)

Multiplying this by a factor E2/(m2
o c4) and using (1.61) and (1.64) together with

the relation
v2

r

c2 =
1
c2

(
dr
dτp

)2 m2
o c4

E2 ,

we may rewrite (1.66). As a result, we obtain the law of motion for a particle with
energy E, which is identical to the exact solution in GR, see Shapiro and Teukolsky
(1983):

1
c2

(
dr
dτp

)2

=
E2

m2
o c4 −

(
h2

p

r2 m2
o c2 +1

)(
1− Rg

r

)
.

Note that in the approximation of the Newtonian potential, this law of motion looks
as follows:

v2
r =

2
mo

(
EN +mo

GM
r

)
− h2

N
r2 m2

o
,

where hN = mo vϕ r = const.
Let us consider particles moving in circular orbits around a Schwarzschild black

hole. For such motion, both vr and dr/dτp become zero. For the sake of convenience,
we may introduce an effective potential (Shapiro and Teukolsky 1983):



1 The standard model of disc accretion 25

V (r) =

(
h2

p

r2 m2
o c2 +1

)(
1− Rg

r

)
.

For circular orbits, the first derivative of this potential becomes zero (the potential
has an extremum). The system of equations

dr
dτp

= 0 ,
∂V (r)

∂ r
= 0

yields the following angular momentum in a circular orbit:

h2
p =

m2
o r Rg c2

2−3Rg/r
. (1.67)

After squaring (1.65), we derive the tangential velocity, as measured by the local
observer, from (1.67):

vϕ

c
=

1√
2

√
Rg

r−Rg
. (1.68)

For the local observer, the angular velocity of a particle is

ωl =
vϕ

r
=

c√
2r

√
Rg

r−Rg
. (1.69)

Using (1.60), we obtain for an observer at infinity:

ω =
c
√

Rg√
2r3/2

=

√
GM

r3/2 , (1.70)

that is, the classical expression following from Kepler’s law.
According to the Rayleigh criterion (Rayleigh 1917), stable orbits cannot exist

where dhp/dr < 0. This criterion implies that the last stable circular orbit has a
radius rISCO = 3Rg.

When substituting the velocity vϕ = c/2, which corresponds to rISCO, into (1.64),
we determine the energy of a particle rotating in the innermost possible stable or-
bit. The energy of this particle, E = mo c2 2

√
2/3, is less than its rest energy at

infinity, m0 c2. This means that when a particle moves from infinity towards the
Schwarzschild black hole, that is, in the process of accretion, the released energy is
(m0 c2−E)≈ 0.0572m0 c2. Thus, the energy conversion efficiency in the accretion
process onto a non-rotating black hole is equal to ∼ 6%. A calculation using the
Kerr metric shows that the binding energy of the particle is largest for an extremely-
fast rotating black hole and equals to 1−

√
1/3≈ 0.423 times the rest energy (Kato

et al 2008).
Extracting the square root of (1.67), we find the specific angular momentum of a

particle in circular orbit in the Schwarzschild metric:
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Fig. 1.3 Specific angular momentum h of a test particle in the gravitational field of a black hole
(uppermost panel) and the viscous torque F(h) in a stationary disc, normalised values (lower pan-
els). The inner radius of the disc is rin = 3Rg = 6GM/c2. Solid lines show the dependence in the
exact logarithmic potential (1.59), dotted lines show the same in the Paczynski–Wiita potential,
dashed lines – in the Newtonian approximation. In the middle panel, a rectangular area is drawn,
shown enlarged in the lower panel.
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h =
hp

mo
=

√
GM r√

1− 3GM
c2 r

. (1.71)

Figure 1.3 (upper panel) shows the dependence of the specific angular momentum
of a test particle on the radius of the orbit in the gravitational field of the black
hole. In addition, the respective dependencies are shown in the Newtonian potential
(dashed line) and in the Paczynski–Wiita potential (dotted line). In the gravitational
field of the Schwarzschild black hole, the angular momentum h becomes minimum
at the radius of the innermost stable circular orbit 6GM/c2. In contrast to the case
of the Newtonian potential, the first derivative of the specific angular momentum,
dh/dr, vanishes at this radius. (see Fig. 1.3, upper panel). The innermost stable
orbit is located at 3Rg in both the approximate Paczynski–Wiita potential (1.56)
and the exact potential (1.59). The binding energy in the Paczynski–Wiita potential,
however, differs from the value in the Schwarzschild metric:

(m0 c2−E)/(m0 c2)

Newtonian potential: 1/12
Paczyński–Wiita potential: 1/16

Logarithmic potential and Schwarzschild metric: 1−2
√

2/3

Circular orbits exist only down to the radius where vϕ = c. In the logarithmic
potential, the innermost circular orbit lies at 3Rg/2, which coincides with the exact
value predicted by general relativity. In the Paczynski–Wiita potential, the innermost
circular orbit is located at 2Rg.

Figure 1.3 also shows the viscous torques in the disc as functions of radius given
by formula (1.54). Note that, for both the Paczynski–Wiita and the logarithmic po-
tentials, the torque itself, as well as its first derivative, vanishes at the innermost
stable orbit (see Fig. 1.3, lower panel).

1.4.5 Energy Release in Geometrically Thin Discs

Let us return to the study of discs in the Newtonian approximation. A detailed
analysis of the energy balance equation is given, for example, in the appendix of the
book by Kato et al. (1998). The energy dissipated in the disc per unit volume per
unit time is equal to

ε = ρ νt r2
(

dω

dr

)2

. (1.72)

In the general case of optically thick discs, the energy release ε can be given in
the form of a power-law function of temperature and density (Tayler 1980).

In the simplest approximation for a geometrically thin disc, all the energy re-
leased due to friction in a disc ring is radiated away from the top and bottom surfaces
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of this ring. The energy released per unit time per unit surface area of a geometri-
cally thin disc in a calculation per one side of the disc is

Qvis(t,r)≡
∫ +z0

0
ε(t,r,z)dz =−1

2
Wrϕ r

dω

dr
. (1.73)

Note that the last formula works also in the case of disc reservoirs (Syunyaev and
Shakura 1977), in which the accretion rate is zero. In view of (1.49), we have for an
accreting disc:

Qvis =−
Ṁ
4π

ω r
dω

dr
f (r) . (1.74)

For a Keplerian disc, the above expressions can be re-written in the form (using
(1.72)):

ε =
3
2

ωK wt
rϕ =

9
4

ρ νt ω
2
K , Qvis =

3
4

ωK Wrϕ =
3

8π
Ṁ

GM
r3 f (r) . (1.75)

One can see that the viscous time scale (1.52) in a geometrically thin disc is much
larger than the characteristic thermal time scale, on which the thermal energy in a
unit volume changes:

τth ∼
ρ v2

s

ε
∼ 1

α ωK
, (1.76)

where we have replaced νt using (1.40).
For an accretion disc with a zero viscous torque at the inner boundary and with a

Keplerian distribution of angular momentum, we have (see Eq. (1.55)):

Qvis =
3

8π
Ṁ

GM
r3

(
1−
√

rin

r

)
,

where rin is the radius of the inner boundary of the disc.
The most general expression for the viscous heat in a Keplerian disc, including

one with zero accretion rate, is:

Qvis =
3

8π

ωK F
r2 or Qvis =

3
8π

F
(GM)4

h7
K

, (1.77)

where hK is the specific angular momentum and F is the viscous torque (1.48).
The energy balance equation for geometrically thin discs reflects the fact that the

thermal energy released due to viscosity at radius r is completely radiated away at
the same radius:

Qvis(r) = Qrad(r) , (1.78)

where Qrad(r) is the radiated flux from one of the two surfaces of the accretion disc.
The last equation requires a modification if the accretion rate is high, & ṀEdd. It
turns out that the radial transport of heat should also be taken into account.

In the approximation of a disc radiating like a blackbody, it is possible to charac-
terize its flux with an effective temperature:
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Qrad = σSB T 4
eff , Teff ∝ r−3/4 . (1.79)

The effective temperature at the disc surface has its maximum Tmax at radius

rmax =

(
7
6

)2

rin ,

and is equal to

Tmax = 23/4
(

3
7

)7/4 ( GM Ṁ
π σSB r3

in

)1/4

= 2
(

3
7

)7/4 ( Ld

π σSB r2
in

)1/4

.

We introduced in the last formula the total bolometric luminosity from both sides
of the disc, equal to half the released gravitational energy of the matter falling from
infinity to the gravitating centre:

Ld = 4π

∫ rout

rin

Qrad r dr =
1
2

Ṁ
GM
rin

.

The specific potential energy of a particle moving from infinity to the inner edge of
the disc decreases from zero to −GM/rin. Half of this energy heats the disc and is
radiated and the other half goes into kinetic energy of rotation.

This ‘virial theorem’ does not apply to individual rings in the disc. We integrate
the energy released from the disc at distances r� rin from both sides of the disc:

2
∫ 3

8π
Ṁ

GM
r3 2π r dr =

3
2

Ṁ
GM

r
,

and find that it is three times as high as the amount of released gravitational energy.
This happens since along with angular momentum, transferred outwards from the
centre during the accretion process, a part of the energy is transferred as well.

Indeed, using the definitions of the integrated quantities (1.45), (1.46), and (1.73),
let us multiply the energy balance equation (1.26) by 2πr and integrate it over disc
thickness, keeping in mind that we agreed to use the positive value wt

rϕ =−wrϕ for
accretion discs. We obtain

Ṁ
∂

∂ r

(v2
ϕ

2
+Φ

)
= 2π r×2Qvis +

∂

∂ r
(ωK F) , (1.80)

where F = 2π r2Wrϕ is the total viscous torque between neighboring rings in the
disc, introduced in $ 1.4.2. And thus, the energy from gravitational interaction, re-
leased as matter moves towards the centre, is dissipated (radiated from both sides of
the disc) and is redistributed over the disc as a result of the work of viscous forces
transferring angular momentum.

Another important conclusion can be drawn from considering the last equation.
The disc releases heat and radiates even if the accretion rate is zero. If the matter
cannot pass through the inner boundary, the radial motion of matter towards the
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disc centre may be interrupted. This happens, for example, if the central object is a
neutron star with a strong magnetic field. While Ṁ = 0, the viscous forces do not
stop working, the matter is heated up and the heat turns into radiation. The energy in
such a disc, along with the angular momentum, comes from the neutron star through
the inner boundary of the disc.

1.4.6 Disc Radiation

The radiative flux in a unit solid angle from a flat accretion disc at distance d
from the disc is equal to

Fν =
2π

d2 cos i
∫ rout

rin

Iν r dr , (1.81)

where i is the inclination of the disc to the line of sight and Iν(r) is the intensity of
radiation from the disc surface.

In the disc photosphere, the following radiative processes are frequently consid-
ered (see, for example, Kato et al (2008)):

• Free-free and bound-free transitions,
• Scattering off free electrons,
• Compton scattering (scattering off cold electrons),
• Inverse Compton scattering (if the energy of the electrons and/or ions are very

high),
• Line broadening caused by the rotation of the disc.

The Planck spectrum describes the spectral density of electromagnetic radiation
emitted by an isothermal atmosphere if scattering is not taken into account. At every
radius, the disc radiates like a blackbody of temperature Teff with intensity:

Bν(Teff) =
2hν3

c2
1

ehν/kTeff −1
. (1.82)

The spectral flux integrated along the disc radius in shown in Fig. 1.4.
For a disc spectrum as shown in Fig. 1.4, the power-law distribution describes

the middle interval. Let is determine the power-law index of this distribution. Al-
most the whole disc, with the exception of the central parts (which, however, give
an overwhelming contribution to the total amount of the radiated energy), may be
characterized by the effective temperature in the form of a simple power-law func-
tion of radius (1.79). Substituting r = r0(T0/Teff)

4/3 and (1.82) in the integral (1.81),
we get

Fν =
16π

3d2 cos i
(

k T0

h

)8/3 hν1/3

c2 r2
0

∫ xout

xin

x5/3

ex−1
dx ,

where we have made the substitution x = hν/kTeff = (hν/kT0)(r/r0)
3/4.
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Fig. 1.4 Spectral distribution of radiative flux density from a standard optically thick, geomet-
rically thin disc in the Newtonian metric. The horizontal axis shows the normalised radiation
frequency. The vertical axis shows the spectral radiative flux density in units of [erg/Hz/cm2/s]
normalised to the maximum flux density at hν/k Tmax ≈ 0.8. The maximum of distribution νFν is
at hν/k Tmax ≈ 2.5.

The radius r0 can be chosen rather close to rin, implying that T0 ≈ Tmax with
fairly good accuracy. Then x = (hν/kTmax)(r/rin)

3/4. At those frequencies where
the conditions xin � 1 and xout � 1 are satisfied, the value of the integral in the
last expression varies only little for different ν , and is approximately equal to the
integral from zero to infinity when expressed with the help of the special gamma
function and Riemann zeta function as (10/9)Γ (2/3)ζ (8/3) ≈ 1.93. Thus, for a
wide frequency range (rin/rout)

3/4 < hν/kTmax < 1, the spectral flux density of disc
radiation depends on the frequency according to Fν ∝ ν1/3.

For a homogeneous atmosphere where scattering is present, the spectrum will
differ from that of a blackbody (Felten and Rees 1972):

Iν '
√

κa

κa +κsc
Bν(Teff) ,

where κa is the absorption coefficient and κsc is the coefficient for scattering off free
electrons. If electron scattering dominates over absorption and if the disc spectrum
is susceptible to Comptonization, the change in shape of the X-ray spectrum from a
disc around a stellar mass compact object is approximately described by the spectral
hardening factor fc:

Fν =
1
f 4
c

π Bν( fc Teff) ,
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where Fν is the flux from a unit surface into a half-space. The product fc Teff is
called the colour temperature. The power of four is explained by the fact that the
total radiated energy from the disc is independent of the spectral shape.

1.5 Stationary α-Discs

As we have seen in Sect. 1.4, the use of the continuity equation and the equation
of motion, integrated (or averaged) along the vertical coordinate, enable us to find
out the radial structure of thin stationary accretion discs. Is is possible to separately
study the vertical and the radial structure of the disc because the characteristic time
scales, namely, viscous and hydrostatic ones, are significantly different. The char-
acteristic hydrostatic time scale corresponds to the time scale for changes in the
thickness of the disc at a given radius as a result of a change of its central tempera-
ture. For dimensional reasons, this quantity is proportional to the disc half-thickness
divided by the sound speed, z0/vs ∼ 1/ωK ∼ τdyn, and corresponds to the dynamical
time which is much smaller than the viscous time in a thin disc (see Sect. 1.4.3).

The vertical structure of accretion discs in the general case (stationary as well
as non-stationary) is described by a system of four ordinary differential equations,
the exact solution to which, for given boundary conditions, can be found using nu-
merical methods. In some sense, a calculation of the vertical structure of a disc is
similar to the calculation of the internal structure of stars (Tayler 1980). The sys-
tem of differential equations for the vertical structure of a disc was solved by a
number of authors (see, for example, Meyer and Meyer-Hofmeister (1982); Sha-
viv and Wehrse (1986); Suleimanov (1992); Cannizzo (1992); Ketsaris and Shakura
(1998a); Hameury et al (1998); Dubus et al (1999)).

The disc can be divided into different zones (A, B, and C) according to the
processes predominant in opacity formation and depending on comparative role
of gaseous and radiative pressure (Shakura and Sunyaev 1973). A high tempera-
ture zone with main contribution from radiation pressure may arise in the central
parts of the disc—the so-termed zone A. In this region, the opacity is determined
by electron scattering. There are a number of studies devoted to the instabilities in
this region (Lightman and Eardley 1974; Shibazaki and Hōshi 1975; Shakura and
Sunyaev 1976). It was shown that zone A is thermally and viscously unstable. Its
vertical structure can be described using the polytrope approximation. Convection
plays an important role in the energy transfer to the disc surface (Bisnovatyi-Kogan
and Blinnikov 1976; Shakura et al 1978). In addition, the standard model should
be modified since it is necessary to take into account non-Keplerian motion of gas
in the disc due to a significant contribution of the pressure gradient in the equation
of motion. It is also important to address the non-local character of the energy bal-
ance equation because the heat is effectively transported together with the radially
moving matter (Paczynski and Bisnovatyi-Kogan 1981).

For quick estimates, one can use the following expressions. The boundary be-
tween zones A and B, where the gas pressure equals the radiative pressure, is located
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at
RAB/(3Rg)∼ 80(mx α)2/21 (Ṁ/ṀEdd)

16/21 .

The boundary between zones B and C, where the cross-sections of absorption and
scattering of photons are equal:

RBC/(3Rg)∼ 330(Ṁ/ṀEdd)
2/3 .

The outer boundary of zone C, beyond which recombination of hydrogen starts:

RC/(3Rg)∼ 105 (Ṁ/ṀEdd/mx)
1/3 .

We have normalised here the accretion rate to its critical value ṀEdd = 1.4×
1018 mx g/s (see Sect. 1.1), the radius, to the characteristic value of the inner ra-
dius of a disc around a compact object, 3Rg ≈ mx×8.9×105 cm (see Sect. 1.4.4),
and the mass of the central body, to the solar mass: mx = M/M�.

In this section, we consider only the stable zones of the disc where the standard
model holds. In Sect. 1.5.1 we write down the standard disc equations (Shakura and
Sunyaev 1973). In Sect. 1.5.2 and Sect. 1.5.3 we consider zones B and C, for which
we present stationary solutions.

1.5.1 Equations of Vertical Structure

1. Equation of Hydrostatic Balance

The equation of hydrostatic equilibrium along the z-coordinate in the Newtonian
metric in the case of a thin disc has the form:

1
ρ

dP
dz

=−ω
2
K z , (1.83)

where P(z) is the total pressure in the disc, equal to the sum of the radiation pressure
Prad(z) = aT 4/3, where a = 7.56×10−15 erg/cm3/K4 is the radiation constant, and
the gas pressure Pgas(z), which is determined from the equation of an ideal gas:

Pgas =
ρ

µ

kT
mp

,

where µ is the mean molecular weight of matter in the disc, T (z) is the temperature
and ρ(z) the density of the matter.

2. Energy Generation
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The heat dissipated in the disc at a given radius between the plane of symmetry
of the disc and a given level at height z is a function of the vertical coordinate z:

Qvis(z) =
∫ z

0
ε dz̃ .

The rate of energy generation ε [erg/cm3/s] in a Keplerian disc is determined by the
viscous stress tensor. From (1.75) we have:

dQvis

dz
=

3
2

ωK wt
rϕ . (1.84)

The component of the turbulent viscosity tensor in the disc wt
rϕ(z) is locally ex-

pressed in terms of the total pressure in this location with the help of the α-parameter

wt
rϕ = α P .

These equations represent the simplest hypothesis regarding energy release in the
disc. It is possible to model the disc vertical structure under more complicated as-
sumptions. For example, Nakao and Kato (1995) study the case of a disc with turbu-
lent diffusion determining the dependence of viscous heating, and the α-parameter
itself, on z.

3. Radiative Transfer in the Disc

If the opacity in the disc does not exceed certain values, energy is transferred
vertically towards the disc surfaces by electromagnetic radiation. Let us assume that
the condition of local thermodynamic equilibrium (LTE) holds inside the disc, i.e.
Kirchhoff’s law applies, according to which (Sobolev 1969)

jν = 4πκa(ν)Bν(T ) ,

where jν is the emission coefficient per gram [erg/Hz/s/g/sr], κa(ν) is the absorption
coefficient per gram [cm2/g], Bν(T ) is the Planck distribution [erg/Hz/cm2/s/sr] and
T (z) is the temperature.

We write down the moments of the stationary equation for radiative transfer (Mi-
halas and Mihalas 1984), assuming that the medium is motionless in the direction of
radiation propagation, along the z-axis. The zeroth moment of the transfer equation
is given as a result of integrating the basic radiative transfer equation over all solid
angles. After integrating over all frequencies we get

1
ρ

dQrad(z)
dz

= 4π(κP B(T )−κa J(z)) , (1.85)
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where κa is the frequency-averaged absorption coefficient per gram, which is
equal to the Planck mean opacity coefficient κP (Mihalas and Mihalas 1984) at
thermodynamic equilibrium, Qrad(z) is the radiative energy flux along the z-axis,
B(T ) = σSBT 4/π the Planck function integrated over frequency and J(z) the mean
intensity of radiation entering the layer dz, integrated over frequency. The physical
meaning of this equation is clear: the change in the flux of radiative energy is equal
to the input of energy as a result of radiation of the matter (this term is written with
the help of Kirchhoff’s law) minus the energy absorbed by the matter.

The first moment of the equation of radiative transfer is obtained when we mul-
tiply it by the cosine of the angle to the unit area, divide by c, and integrate over
all solid angles. This equation in principle expresses the conservation of the total
momentum of radiation.

1
ρ

dPrad(ν ,z)
dz

=−(κa(ν)+κs(ν))
Qrad(ν ,z)

c
. (1.86)

where κs(ν ,z) is the scattering coefficient, which is generally frequency-dependent,
Qrad(ν ,z) is the radiative energy flux along the z-axis, and Prad(ν ,z) is the radiation
pressure at frequency ν . Thus, the radiation pressure force balances the change in
momentum of the radiation caused by interaction with the matter.

If we consider the moments of the equation, we get rid of the angular coordinate.
The mean intensity of the radiation Jν is the zeroth moment of the intensity. The
spectral flux of radiative energy Qν is the first moment, and the radiation pressure
Prad is the second moment. As is well known, every moment of the transfer equation
contains a quantity a higher order. The solution to such systems of equations requires
imposition of certain additional closing relations. The main closing method for an
isotropic field is the Eddington approximation.

The mean intensity of radiation J(z) is related by definition to the radiation en-
ergy density via the relation:

εrad =
4πJ

c
. (1.87)

For an isotropic radiation field, there exists a simple relation between the radiation
energy density and the radiation pressure:

Prad =
εrad

3
. (1.88)

This approximation works well in the case of a geometrically thin disc (optically
thin as well as optically thick).

An optically thick disc (optical depth τ � 1) may be studied in the ‘diffusion
approximation’. Let us consider the first moment of the radiative transfer equation
(1.85). We assume that the change in Qrad is insignificant there, and the left-hand
side of (1.85) is zero. Thus, the radiation field spectrum is close to that of a black-
body: J(z) = B(T ). It follows from relation (1.87) that εrad = 4πB(T )/c≡ aT 4, and
taking into account the isotropy of the radiation field, integrating the second moment
of the radiative transfer equation (1.86) over frequency, we obtain:
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c
3κRρ

d(aT 4)

dz
=−Qrad , (1.89)

where the Rosseland opacity κR(z) is introduced

1
κR
≡
∫

∞

0
1

κa(ν)+κs(ν)
∂Bν (T )

∂T dν∫
∞

0
∂Bν (T )

∂T dν

. (1.90)

If we consider quantities averaged over z, we obtain:

Qrad =
1
3

c
κR ρ z0

εrad . (1.91)

With allowance for convection, the vertical structure of discs was studied by
Meyer and Meyer-Hofmeister (1982) for two variants of viscosity: proportional to
the gas pressure and to the total pressure.

4. Dependence of the Surface Density on z.

We introduce the quantity Σ(z) for the surface density of the disc ‘gathered’ up
to a certain height z, and with the help of this quantity we rewrite (1.41):

dΣ

dz
= ρ . (1.92)

1.5.2 Solution for the Vertical Structure

This section describes an approach to the solution of the disc vertical structure
equations, proposed and implemented by Ketsaris and Shakura (1998a). The method
consists in finding similar solutions to the system of equations converted to a dimen-
sionless form. The opacity coefficient and the rate of energy release are expressed
as power-law functions of ρ and T . The obtained solution is compared to the nu-
merical results of Suleimanov et al (2007), and the agreement of the two methods is
shown.

For sufficiently high temperatures (> 106 K), Thomson scattering off free elec-
trons plays the most important part. The corresponding region of the disc, in which
gas pressure dominates at the same time, is called zone B. Further out from the cen-
tre, where photo-ionization of ions from heavy elements and free-free transitions
dominate, we have zone C. The contribution of radiation pressure to the total pres-
sure in these two zones is neglected. In zone B, this assumption significantly limits
the accuracy of the solution if Prad & (0.2−0.3)Pgas.
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When calculating the disc vertical structure, we will assume that all heat from
the work of viscous forces at given r and z is transformed to radiative energy. In
particular, local energy balance (1.78) will apply. We replace everywhere Qrad(z) =
Qvis(z) = Q(z).

We list together the equations of the vertical structure of the disc (1.83), (1.84),
(1.89), and (1.92):

1
ρ

dP
dz

= −ω
2
K z ,

dΣ

dz
= ρ ,

dQ
dz

=
3
2

ωK wt
rϕ ,

c
3κRρ

d(aT 4)

dz
= −Q . (1.93)

The rate of energy release ε in α-discs is proportional to the pressure. The opacity
coefficient is written as follows:

κR = κ0
ρς

Tg . (1.94)

For hydrogen discs:

ς =g= 0, κ0 = 0.4 cm2/g , if κT� κff , (1.95)

ς = 1,g= 7/2, κ0 = 6.45×1022 cm5 K7/2/g2 , if κff� κT , (1.96)

and for discs with solar chemical abundances (Frank et al 2002; Kurucz 1970, 1993):

ς =g= 0, κ0 = 0.335 cm2/g , if κT� κff ,

ς = 1,g= 7/2, κ0 ≈ 5×1024 cm5 K7/2/g2 , if κff� κT , (1.97)

Calculations of absorption in the plasma, including collective and quantum effects,
electron degeneracy, etc., performed by the OPAL project at Livermore laboratory
(Iglesias and Rogers 1996) (see Fig. 1.5) better fit another law in the absorption-
dominated region:

ς ≈ 1,g≈ 5/2, κ0 ≈ 1.5×1020 cm5 K5/2/g2 , if κff� κT . (1.98)

For convenience, we introduce the dimensionless variable3

σ =
2Σ(z)

Σ0
,

3 In the original paper by Ketsaris and Shakura (1998a), the parameter Σ0 was defined as half the
total surface density of the disc. Due to this, there is a difference in the numerical coefficients in
some of the formulas given below compared to the formulas in Ketsaris and Shakura (1998a).
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Fig. 1.5 Dependence of the opacity coefficient on density and temperature according to the OPAL
project (Iglesias and Rogers 1996) and calculations for the low-temperature region in a medium
with solar composition (Ferguson et al 2005). The horizontal line corresponds to the value of
the scattering coefficient off free electrons κ0 ' 0.34 cm2/g. Two fits are shown for a density of
ρ = 10−5 g/cm3, namely, (1.98) and the dependence κR = 1.2× 1025 ρ T−7/2 cm5 K7/2/g2 that
gives a better fit in the high-temperature region (solid lines).

and in addition the dimensionless functions of this variable:

p = P(z)/Pc , θ = T (z)/Tc , z′ = z/z0 , j = ρ(z)/ρc and q = Q(z)/Q0 .

The symbols Pc, Tc, and ρc represent physical quantities in the equatorial plane of
the disc and Q0 = (ac/4)T 4

eff is the blackbody flux from one surface of the disc. We
rewrite the system of equations (1.93) in the following form:

dp
dσ

= −Π1 Π2 z′ ; Π1 =
ω2

K z2
0 µ

ℜTc
;

dz′

dσ
= Π2

θ

p
; Π2 =

Σ0

2z0 ρc
;

dq
dσ

= Π3 θ ; Π3 =
3
4

α ωK ℜTc Σ0

Q0 µ
≡ α ℜTc Σ0

Wrϕ µ
;

dθ

dσ
= −Π4

q jς

θg+3 ; Π4 =
3
32

(
Tef

Tc

)4
Σ0κ0 ρ

ς
c

Tg
c

.

(1.99)
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The heating per gram ε/ρ = ∂Q/∂Σ determines the dependence of the temper-
ature on z. In principle, the intensive mixing in the disc can lead to a situation where
the energy output per unit mass is not dependent on the height z. The quantity ε

depends in this case only on the density. The temperature dependence disappears
from the equation describing the energy release (the third line in (1.99)), and Π3
becomes equal to 1. A solution for such a case was also obtained by Ketsaris and
Shakura (1998b).

To find a solution to (1.99), i.e. to find the four functions p(σ), z′(σ), q(σ), θ(σ)
and the four unknown parameters , it is necessary to set eight boundary conditions —
four at the surface of the disc and four in its symmetry plane. Ketsaris and Shakura
(1998a) performed a numerical integration of the equations and tabulated values
Π1..4. These values are given in Tables 1.1 and 1.2. Figure 1.7 shows functions
z′(σ), p(σ), θ(σ), and q(σ) in the Kramer opacity regime. Plots for other cases
can be found in the work by Ketsaris and Shakura (1998a).

In the symmetry plane of the disc for σ = 0, we have the obvious conditions:

p(0) = 1; z′(0) = 0; q(0) = 0; θ(0) = 1 .

The first two boundary conditions at the disc surface can also be straightfor-
wardly determined as:

z′ (1) = 1; q(1) = 1 .

The surface of the disc is defined as the level at which thermalization of radiation
occurs. We may find boundary conditions for the pressure and temperature from
approximate solutions to the equations of radiative transfer and hydrostatic balance
close to the disc surface. Note that there is a difference in boundary conditions for
different opacity regimes (see Fig. 1.6). In zone B, where absorption dominates,
the disc surface is defined as the level in the photosphere where the optical depth,
calculated from the outside inwards, is equal to 2/3. In the zone with predominant
Thomson scattering, the disc surface is taken as the level where the effective optical
depth, calculated including scattering, is equal to 1.

Let us derive the remaining boundary conditions in two opacity regimes.

Kramers Opacity

We will measure the optical depth τ from the surface of the disc in the direction
of its symmetry plane, i.e. in the direction of decreasing height z. Deep inside the
photosphere, where τ ∼ 1, we will use the solution to the equations of radiative
transfer and radiation balance for the case of LTE and for a frequency-independent
absorption coefficient in the Eddington approximation (Sobolev 1969):

T
Teff

=

(
1+ 3

2 τ

2

)1/4

. (1.100)
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Fig. 1.6 The surfaces at which the boundary conditions are set, the upper surface of the disc and
its equatorial plane (solid lines). Values of the dimensionless coordinate σ and functions at these
surfaces are shown. The arrows indicate directions of increasing height z′ = z/z0 and optical depth
τ , calculated from the exterior towards the equatorial plane. The two disc zones with different
opacity regimes are separated nominally by the grey bar. In zone B (on the left), the optical depth
at the disc surface τT(τ

∗ = 1)� 1. In zone C (on the right), τff = 2/3. The dashed line is the level
where the disc temperature equals the effective temperature of the outgoing radiation.

Let the dimensionless variable σ = 1 at the level where τ = 2/3 and T = Teff. Us-
ing the definition of the parameter Π4, we obtain the boundary condition for the
dimensionless temperature θ :

θ (σ = 1) =
[

16
3

Π4

τ0

]1/4

,

where we have introduced the dimensionless parameter τ0, proportional to the total
optical depth of the accretion disc (see (1.96)):

τ0 =
Σ0κ0 ρc

2T 7/2
c

.

This quantity is a free parameter of the problem and varies widely (from a few to
∼ 106).

To determine the boundary condition for the dimensionless pressure, we use the
equation of hydrostatic balance (the first in system (1.93)). We divide both parts of
this equation by the opacity coefficient κR and replace variables using the formula

dτ =−κR ρdz

and making use of (1.96), arrive at:

1
2

dP2

dτ
=

ω2
K z0 ℜT 9/2

κ0 µ
.
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Close to the photosphere, the z coordinate practically does not change and is equal
to z0. Integrating the last equation from τ = 0 to τ = 2/3, we get as a result the
boundary condition for the dimensionless pressure:

p(σ = 1) =

[
3

16×21/8

Π1 Π2

Π4

(
16
3

Π4

τ0

)17/8

f (τ = 2/3)

]1/2

,

where
f (τ) =

∫
τ

0
(1+

3
2

τ̃)9/8 dτ̃ , f (τ = 2/3)≈ 1.05 .

Figure 1.7 shows the solution to the system of equations for the given case.
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Fig. 1.7 Solution to the system of equations (1.99) in the form of dimensionless functions of the
dimensionless variable σ , proportional to the column density: temperature θ(σ), pressure p(σ),
radiative flux q(σ), and height from the equatorial plane z′(σ). In the equatorial plane σ = 0, at
the disc surface σ = 1.

Thomson Scattering

If scattering processes are of high importance in the photosphere, thermalization
occurs at the depth where the so-termed effective optical depth is of the order of 1:

τ
∗ =−

∞∫
z0

(κffκT)
1/2

ρ dz≈ 1 .
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The effective optical depth is accumulated as
√

κff(κT +κff)ρ dz (see for example
Zel’dovich and Shakura (1969); Mihalas (1978)), which approximately gives the
above condition. At this level, the optical depth due to scattering is much larger than
1:

τT(τ
∗ = 1) =−

∞∫
z0

κT ρ dz� 1

and T ' Teff (3τT/4)1/4 from (1.100). Thus, the boundary condition for the dimen-
sionless temperature has the following form:

θ (σ = 1)'
[

8Π4 τT(τ
∗ = 1)

κT Σ0

]1/4

.

For the pressure, we have:

p(σ = 1) = 2Π1 Π2
τT(τ

∗ = 1)
κT Σ0

.

A convenient free parameter turns out to be the quantity

δ =
κT Σ0/2

τT(τ∗ = 1)
. (1.101)

This parameter is the ratio of half the total optical depth due to scattering to the
optical depth due to scattering at the thermalization depth.

1.5.3 Radial Dependence of Physical Parameters in Stationary
α-Discs

In order to explain observations of sources with accretion discs as extended ob-
jects, whose properties vary significantly from the centre to the periphery, we have
to calculate radial dependencies of the disc physical parameters. For this it is nec-
essary to solve the equation of angular momentum transfer, which was done for the
case of a stationary disc in Sect. 1.4, and also to solve the equations of vertical struc-
ture (see the previous section). Analytical approximations for radial dependencies
of the disc parameters were given in the work by Suleimanov et al (2007). We will
describe these analytical approximations below.

We consider the following physical parameters: surface density Σ(r), disc half-
thickness zo(r), density ρc(r) and temperature Tc(r) at the symmetry plane of the
disc for z= 0. It is necessary to define what we consider to be the surface of the disc.
When studying observed spectra it turns out to be convenient to assume that the disc
surface corresponds to the level where the Rosseland optical depth τR = 2/3.

The vertical structure of the disc is determined by Eqs. (1.99) for known values
of the dimensionless parameters Π1..4. We express the quantities z0, Σ , ρc, and Tc
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Table 1.1 Dimensionless parameters of the solution to the equations of vertical structure for Thom-
son opacity versus the decimal logarithm of the free parameter δ .

logδ Π1 Π2 Π3 Π4
6.00 6.99 0.492 1.150 0.460
5.80 6.96 0.493 1.150 0.460
5.60 6.92 0.495 1.150 0.460
5.40 6.87 0.496 1.150 0.460
5.20 6.82 0.498 1.150 0.460
5.00 6.77 0.500 1.150 0.460
4.80 6.70 0.503 1.150 0.460
4.60 6.63 0.505 1.150 0.460
4.40 6.55 0.508 1.150 0.460
4.20 6.47 0.512 1.150 0.460
4.00 6.37 0.516 1.150 0.460
3.80 6.26 0.520 1.149 0.460
3.60 6.13 0.525 1.149 0.460
3.40 5.99 0.531 1.149 0.460
3.20 5.84 0.538 1.149 0.460
3.00 5.67 0.546 1.149 0.459
2.80 5.48 0.555 1.148 0.459
2.60 5.26 0.566 1.147 0.458
2.40 5.02 0.578 1.146 0.458
2.20 4.76 0.593 1.145 0.456
2.00 4.47 0.610 1.142 0.454
1.80 4.15 0.629 1.138 0.450
1.60 3.81 0.652 1.133 0.444
1.40 3.43 0.678 1.126 0.435
1.20 3.03 0.707 1.117 0.420
1.00 2.61 0.740 1.105 0.398
0.80 2.19 0.776 1.091 0.366
0.60 1.77 0.813 1.075 0.324
0.40 1.38 0.849 1.059 0.274
0.20 1.03 0.884 1.044 0.219
0.00 0.74 0.914 1.032 0.166

from (1.99). The resulting expressions contain the basic given parameters of the
disc (accretion rate, mass of the central object, the turbulent α-parameter) as well as
the radial structure defined by ωK(r) and Wrϕ(r). We take the radial dependence of
the vertically integrated component of the viscous stress tensor Wrϕ(r) for the case
of a stationary disc (1.74), and the angular velocity of rotation we set equal to the
Keplerian angular velocity ωK =

√
GM/R3. The radial distribution of the radiative

flux from the disc surface is determined by viscous stresses Wrϕ(r). We recall that
the function f (R), which describes the influence of the boundary conditions on the
surface tension Wrϕ(r), is written as (cf.(1.49)):

f (r) =
2π Wrϕ(r)

Ṁ ω
=

F
Ṁ h

in a disc with constant accretion rate. For a thin disc with a stress-free inner radius,
we have



44 Galina Lipunova, Konstantin Malanchev, and Nikolay Shakura

Table 1.2 Dimensionless parameters of the solution to the equations of vertical structure for
Kramers opacity versus the decimal logarithm of the free parameter τ0. The rightmost column
shows the decimal logarithm of the disc optical depth (1.114).

logτ0 Π1 Π2 Π3 Π4 logτ

6.00 7.75 0.465 1.131 0.399 6.046
5.80 7.71 0.466 1.131 0.399 5.847
5.60 7.67 0.468 1.131 0.399 5.646
5.40 7.62 0.469 1.131 0.399 5.445
5.20 7.56 0.471 1.131 0.399 5.245
5.00 7.50 0.473 1.131 0.399 5.045
4.80 7.44 0.475 1.131 0.399 4.845
4.60 7.36 0.477 1.131 0.399 4.644
4.40 7.27 0.480 1.131 0.399 4.444
4.20 7.18 0.483 1.131 0.399 4.244
4.00 7.07 0.487 1.131 0.399 4.043
3.80 6.95 0.491 1.131 0.399 3.843
3.60 6.82 0.496 1.131 0.399 3.643
3.40 6.67 0.501 1.131 0.399 3.443
3.20 6.50 0.508 1.131 0.398 3.243
3.00 6.31 0.515 1.131 0.398 3.043
2.80 6.10 0.524 1.130 0.398 2.842
2.60 5.87 0.534 1.130 0.398 2.642
2.40 5.60 0.546 1.129 0.397 2.442
2.20 5.31 0.560 1.128 0.397 2.241
2.00 4.98 0.576 1.126 0.395 2.040
1.80 4.62 0.596 1.124 0.393 1.839
1.60 4.23 0.619 1.120 0.389 1.638
1.40 3.79 0.647 1.114 0.383 1.434
1.20 3.33 0.679 1.106 0.371 1.232
1.00 2.83 0.716 1.095 0.354 1.025
0.80 2.34 0.756 1.081 0.326 0.819
0.60 1.86 0.798 1.065 0.286 0.613
0.40 1.42 0.838 1.050 0.237 0.406
0.20 1.05 0.876 1.036 0.185 0.202
0.00 0.75 0.908 1.025 0.136 -0.001

f (r) =
8π

3
Qvis

Ṁ ω2 = 1− hin

h
.

For the case Ṁ = Ṁ(r, t) 6= const, it is necessary to use the function f (r) in its
general form

f (r) =
F(h, t)
Ṁin(t)h

=
F(h, t)/h

∂F(h, t)/∂h
∣∣
h=hin

. (1.102)

We normalise the accretion rate at the inner boundary of the disc and other param-
eters to their characteristic values in binary systems with stellar mass components:

M = mx M�, Ṁ = Ṁ17×1017g/s,
r = R7×107cm (zone B) or r = R10×1010cm (zone C).

(1.103)
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As a characteristic value for the coefficient κ0 from expression (1.94) we use the
quantity κ∗T = 0.335 cm2/g in zone B, taken from an approximation to the tabulated
values (Kurucz 1970, 1993), for a medium with mass fraction of hydrogen X = 0.69
and helium Y = 0.27 and κ∗0 = 5× 1024 cm5 K7/2/g2 in zone C (see Frank et al
2002, their chapter 5). The corresponding molecular weight µ=0.62. In a medium
with such chemical composition, absorption of the radiation is mainly due to pho-
toionization of ions of heavy elements. If we assume that all parameters Π1..4 are
equal to 1, κT = 0.4 cm2/g, κ0 = 6.4× 1022 cm5 K7/2/g2, and µ = 0.5, then the
expressions for the radial dependencies of the physical parameters become identical
to the expressions by Kato et al (1998; their chapter 3) derived for hydrogen discs.

Zone B

In this zone, the main contribution to the optical depth comes from scattering
off free electrons, and gas pressure dominates over radiation pressure. If we use
expression (1.74) for the heat dissipated in the disc due to viscosity, normalising the
parameters according to (1.103), we can solve the system of algebraic equations for
Π1..4 (the right part of the system (1.99)) and obtain:

z0/r = 0.0092m−7/20
x Ṁ1/5

17 α
−1/10 R1/20

7 f (r)1/5
(

µ

0.6

)−2/5
(
κT

κ∗T

)1/10

Πz ,

Σ0 = 5.1×103 m1/5
x Ṁ3/5

17 α
−4/5 R−3/5

7 f (r)3/5
(

µ

0.6

)4/5
(
κT

κ∗T

)−1/5

ΠΣ [g/cm2],

ρc = 2.8×10−2 m11/20
x Ṁ2/5

17 α
−7/10 R−33/20

7 f (r)2/5
(

µ

0.6

)6/5
×

×
(
κT

κ∗T

)−3/10

Πρ [g/cm3],

Tc = 8.2×106 m3/10
x Ṁ2/5

17 α
−1/5 R−9/10

7 f (r)2/5
(

µ

0.6

)1/5
(
κT

κ∗T

)1/5

ΠT [K].

(1.104)

The combinations of the dimensionless parameters Πz, ΠΣ , Πρ , and ΠT are related
in the following way to the parameters Π1..4:

Πz = Π
1/2
1 Π

1/10
3 Π

−1/10
4 ≈ 2.6 ,

ΠΣ = Π
4/5
3 Π

1/5
4 ≈ 0.96 ,

Πρ = Π
−1/2
1 Π

−1
2 Π

7/10
3 Π

3/10
4 ≈ 0.67 ,

ΠT = Π
1/5
3 Π

−1/5
4 ≈ 1.2 .

(1.105)

Their values versus the free parameter δ are shown in Fig. 1.8, left panel. The free
parameter δ is derived from the expression (1.101) and may be estimated from the
total optical depth of the disc τ and other disc parameters in the following way:
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(a) (b)

Fig. 1.8 Left: The dependence of the dimensionless factors Πz, ΠΣ , Πρ and ΠT for zone B (formu-
las 1.105). Right: The same factors for zone C (formulas 1.111). The logarithms of the dimension-
less parameters, characterizing the optical depth in each zone, are displayed along the horizontal
axes. The dependencies are borrowed from Suleimanov et al (2007) and constructed for values
from Table 1.1 (graph to the left) and Table 1.2 (graph to the right).

δ =

√
κ0ρcT−7/2

c

κT
τ X(δ ) , (1.106)

where τ = κT Σ0/2. The numerical factor

X(δ ) = δ

∫ 1

1−1/δ

(P/Pc)
1/2 (T/Tc)

−9/4dσ ∼ 2 , (1.107)

which is independent of the absolute values of the disc parameters, is determined
through integration of the equations of vertical structure. The value of δ may be
found recursively with any desired precision, but this approach will be redundant
in the sense of astronomical application of the obtained radial dependencies. It is
sufficient to use the following estimate:

δ = 440m−1/20
x Ṁ1/10

17 α
−4/5 R3/20

7 f (R)1/10
(

µ

0.6

)21/20
(
κT

κ∗T

)−1/5(κ0

κ∗0

)1/2

.

(1.108)
At high accretion rates, there is a zone in the disc where radiation pressure dom-

inates (zone A). The radius at which the radiation pressure aT 4
c /3 is comparable to

the gas pressure ρcℜTc/µ in the symmetry plane of the disc (the boundary between
zones A and B, see Shakura and Sunyaev (1973)) may be approximately estimated
as

RAB ∼ 107 m1/3
x Ṁ16/21

17 α
2/21

(
µ

0.6

)8/21
(
κT

κ∗T

)6/7

cm. (1.109)
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Here, we used characteristic values (1.105) for the dimensionless parameters Π1..4
and f (r) = 1.

When the accretion rate decreases, zone B shifts radially towards the centre of
the disc, giving way to zone C.

Zone C

The main contribution to the opacity in zone C comes from absorption processes
in the form of free-free and bound-free transitions, and the gas pressure is much
higher than the radiation pressure. As before, from the right-hand part of the system
of equations (1.99) and from the expressions(1.74) and (1.103), we may find the
radial dependencies of the parameters of the disc:

z0/r = 0.020m−3/8
x Ṁ3/20

17 α
−1/10 R1/8

10 f (r)3/20
(

µ

0.6

)−3/8
(
κ0

κ∗0

)1/20

Πz ,

Σ0 = 33m1/4
x Ṁ7/10

17 α
−4/5 R−3/4

10 f (r)7/10
(

µ

0.6

)3/4
(
κ0

κ∗0

)−1/10

ΠΣ [g/cm2],

ρc = 8.0×10−8 m5/8
x Ṁ11/20

17 α
−7/10 R−15/8

10 f (r)11/20
(

µ

0.6

)9/8
×

×
(
κ0

κ∗0

)−3/20

Πρ [g/cm3],

Tc = 4.0×104 m1/4
x Ṁ3/10

17 α
−1/5 R−3/4

10 f (r)3/10
(

µ

0.6

)1/4
(
κ0

κ∗0

)1/10

ΠT [K],

(1.110)

We recall that Ṁ17 is the normalised accretion rate at the inner disc boundary. Note
that if Ṁ(r, t) 6= const, we need to substitute the value of the accretion rate at the
inner boundary when using (1.104) and (1.110). This is convenient since in most
cases this value determines the energetics of observed accreting systems.

The combinations of dimensionless parameters are related to the parameters Π1..4
in the following way:

Πz = Π
19/40
1 Π

−1/20
2 Π

1/10
3 Π

−1/20
4 ≈ 2.6 ,

ΠΣ = Π
1/20
1 Π

1/10
2 Π

4/5
3 Π

1/10
4 ≈ 1.03 ,

Πρ = Π
−17/40
1 Π

−17/20
2 Π

7/10
3 Π

3/20
4 ≈ 0.76 ,

ΠT = Π
−1/20
1 Π

−1/10
2 Π

1/5
3 Π

−1/10
4 ≈ 1.09 ,

(1.111)

and are shown in Fig. 1.8(b) as a function of the free parameter τ0,

τ0 =
κ0ρc

T 7/2
c

Σ0

2
= 500

Ṁ1/5
17 f (r)1/5

α4/5

(
µ

0.6

) (κ0

κ∗0

)2/5
Π

4/5
3 Π

3/5
4

Π
1/5
1 Π

2/5
2

, (1.112)
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approximately equal to

τ0 ∼ 300Ṁ1/5
17 α

−4/5
(
κ0

κ∗0

)2/5

. (1.113)

The full optical depth of the disc

τ =
∫ h

0
κ0 ρ

2 T−7/2dz (1.114)

is determined in the process of numerical solution of the vertical structure and is
uniquely dependent on τ0 (see Table 1.2). We also give the following formula, ap-
proximating the tabulated values to an error of less than 1% for τ0 > 6:

τ ≈ 1.042τ
1.006
0 . (1.115)

The dependencies of the parameters in zones B and C are depicted in Figs. 1.9
and 1.10. The boundary between zones B and C is approximately determined from
equating κT and κ0ρT−7/2 in the equatorial plane of the disc

RBC ∼ 5×107 m1/3
x Ṁ2/3

17

(
µ

0.6

)−1/3
(
κ0

κ∗0

)−2/3(κT

κ∗T

)4/3

cm

for characteristic values of the dimensionless parameters Π1..4 and f (r) = 1.
As outer boundary of zone C we take the radius where recombination of hy-

drogen atoms sets in (at Teff ∼ 104 K). When this happens, thermal instabilities in
the disc start developing, and due to a significant increase in the opacity coefficient
of the matter, convection starts playing a role in the transfer of energy to the sur-
face (Meyer and Meyer-Hofmeister 1981, 1982). In such regions, it is no longer
correct to approximate the opacity coefficient κR using Kramers law. Equating the
right-hand side of (1.74) and σSB T 4

eff, we get:

RC ≈ 3.5×1010 m1/3
x Ṁ1/3

17

(
Teff

5000 K

)−4/3

cm. (1.116)

Due to irradiation of the outer parts of the disc by the central source, the boundary
RC can be further from the centre. This happens if the radiative X-ray flux, falling
on the surface of the disc, thermalizes in its outer layers and heats them up so that
the effective temperature of the disc surface does not drop below ∼ 104 K (Dubus
et al 1999).

Thickness of the Disc

For the discs in binary systems with stellar-mass components during outbursts,
the quantities lg(δ ) and lg(τ0) lie in the range of 2 to 4. For these values, the consid-
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Fig. 1.9 From the top down: relative disc half-thickness z0/r, central Tc and effective temperature
Teff (dot-dashes) and surface density Σ0. The disc parameters are mx = 10, µ = 0.62, α = 0.3, left:
Ṁ17 = 33.6 or Lbol = 0.2LEdd, right: Ṁ17 = 0.336 or Lbol = 0.002LEdd. The solid line shows the
result from the numerical calculation inSuleimanov et al (2007). The dotted line shows the formulas
(1.104) in zone B and the dashed line the formulas (1.110) in zone C. Figures from Suleimanov
et al (2007).

ered combinations of the quantities Π1,2,3,4 practically do not change with radius,
and inside each zone we may use the following characteristic values:

(zone B) Πz ≈ 2.6, ΠΣ = 0.96, Πρ = 0.67, ΠT = 1.2, (1.117)

(zone C) Πz ≈ 2.6, ΠΣ = 1.03, Πρ = 0.76, ΠT = 1.09. (1.118)

Let us consider a disc with matter consisting solely of hydrogen plasma (µ =
0.5), choosing for the opacity a value κR = 6.4× 1022 ρ T−7/2 cm2/g (Kato et al
(1998); in the work by Shakura and Sunyaev (1973) a similar value was used), which
is determined only by free-free electron transitions in the plasma. This value is two
orders of magnitude less than the value of the opacity due to bound-free transitions
κ∗0 . However, the physical parameters depend only weakly on the opacity coefficient
(1.110). For example, the half-thickness of the disc changes due to a direct decrease
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Fig. 1.10 From the top down: density in the disc symmetry plane ρc, ratio between radiation
and gas pressure, and optical depth τ . Disc parameters: mx = 10, µ = 0.62, α = 0.3, left: Ṁ17 =
33.6 or Lbol = 0.2LEdd, right: Ṁ17 = 0.336 or Lbol = 0.002LEdd. Notations as in Fig. 1.9. Figures
from Suleimanov et al (2007).

of κ0, µ , and also Πz, since τ0 decreases almost by a factor of 10 (see (1.112)
and Fig. 1.8b). Thus, the disc half-thickness z0 is ∼ 25% less for µ = 0.5 than for
µ = 0.62.

The numerical solution to the equations of vertical structure as described in this
section gives a larger disc thickness compared to that of a vertically homogeneous
disc, namely, the ‘characteristic hydrostatic scale’. The latter is estimated as vs/ω ,
where vs is the sound speed in the disc symmetry plane. The presence of the factor
two was indicated by Shakura and Sunyaev (1973). It is explained by the inhomo-
geneity of the distribution of density and temperature over the thickness of the disc.
More exactly, this factor Πz ∼

√
Π1 ∼ 2.5, as can be seen from the first line in the

system of equations (1.99):



1 The standard model of disc accretion 51

z0 =
√

Π1

√
ℜTc

µ

1
ωK

. (1.119)

‘Dead’ Discs

The formulas (1.104) and (1.110), describing radial dependencies in a disc, may
be applied also for ‘dead’ discs or disc reservoirs (Syunyaev and Shakura 1977), i.e.
discs in which transfer of matter through the inner boundary is not possible and thus
Ṁin = 0. Since the inner accretion rate and f (r) always show up as multiplicative
factors in (1.104) and (1.110), the formulas could be converted using Ṁin(t) f (r) =
F(h, t)/h (cf. (1.102)).

1.6 Non-stationary Disc Accretion

Outbursts in accreting sources, for example in binary systems and active galactic
nuclei, are of special interest. Bright events can be observed by instruments operat-
ing in different ranges of the electromagnetic spectrum, supplying a wealth of data
about the physics of distant stars. Recently, due to the boom in studies of exoplan-
ets, the subject of disc evolution in protoplanetary systems has become topical in
astrophysics.

Transient phenomena in discs may be caused by different kinds of instabilities,
which in general develop on different time scales. In this section, we will address
the set up of and solution to the problem of non-stationary accretion in a viscous
disc. The problem corresponds to the disc evolution that takes place on viscous time
scales due to redistribution of angular momentum of matter in the disc.

1.6.1 Basic Equation of Non-stationary Accretion

In Sect. 1.4.1 we introduced the following quantities, integrated along the disc
thickness: the surface density Σ0 (1.41) and the integrated component of the turbu-
lent viscosity tensor Wrϕ (1.45). We write down again the obtained equations for
conservation of mass and angular momentum (1.42) and (1.44):

∂Σ0

∂ t
=−1

r
∂

∂ r
(Σ0 vr r) ,

Σ0 vr r
∂ (ω r2)

∂ r
=− ∂

∂ r
(Wrϕ r2) .

Substituting the combination Σ0 vr r from the second line into the first, we obtain the
basic equation for non-stationary accretion:



52 Galina Lipunova, Konstantin Malanchev, and Nikolay Shakura

∂Σ0

∂ t
=

1
r

∂

∂ r

[
1

∂ (ω r2)/∂ r
∂

∂ r
(Wrϕ r2)

]
. (1.120)

This is an equation of diffusion type, a parabolic equation of the second order in
partial derivatives.

The tensor component, integrated over the full thickness of the disc, is written
in the framework of the gradient hypothesis of transfer of angular momentum by
turbulent motions (1.38) in the following way:

Wrϕ(r, t) = 2

Z0∫
0

wt
rϕ dZ = 3ωK

Z0∫
0

νt ρ dZ . (1.121)

If the kinematic coefficient of the turbulent viscosity νt is independent of z, we get:

Wrϕ(r, t) =
3
2

ωK νt Σ0 . (1.122)

We introduce as a new independent parameter the specific angular momentum
h(r) = vϕ(r)r = ω r2. We further define the specific angular momentum of a free
particle, rotating in a Newtonian potential, as the quantity hK ≡

√
GM r. Herewith,

dr = 2hK dhK/(GM).
In the case of Keplerian orbits, Eq. (1.120) taken together with (1.122) is written

in the following form:

∂Σ0

∂ t
=

3
4
(GM)2

h3
∂ 2(Σ0 νt h)

∂h2 , h≡ hK . (1.123)

We also consider an alternative version of this equation, convenient from the
point of view of establishing boundary conditions in an evolving disc. It is, in ad-
dition, more appropriate for α–discs in models where the viscosity is parametrized
using the turbulent α–parameter considered as a constant value, rather than using
the kinematic viscosity coefficient νt.

We introduce the quantity F = 2π Wrϕ r2, which is equal to the total viscous
torque, acting between neighbouring rings in the disc. At constant accretion rate
in the disc, and using for Wrϕ a notation of the form (1.49), for a stress free inner
boundary Wrϕ(r = rin) = 0, we may write the quantity of the total viscous torque in
the following way:

F = Ṁ
√

GM r
(

1−
√

rin

r

)
, Ṁ = const . (1.124)

As we can see, F is linearly proportional to the specific angular momentum h =√
GM r at large distances.
In the new variables, the equation of transfer of angular momentum (1.44) takes

the form (note that vr has a negative value):
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−2π Σ0 vr r = Ṁ(r, t) =
[

∂h
∂hK

]−1
∂F
∂hK

, (1.125)

and equation (1.120):

∂Σ0

∂ t
=

1
4π

(GM)2

h3
K

∂

∂hK

([
∂h
∂hK

]−1
∂F
∂hK

)
. (1.126)

For a Keplerian disc, by definition, ∂h/∂hK ≡ 1.
Which method to use for solving the equation of non-stationary accretion (1.123),

depends on the form of the turbulent viscosity coefficient νt = νt(r,Σ0). In the frame-
work of the model for α-turbulence, when the turbulent viscosity tensor is propor-
tional to the pressure in the disc, the form of νt(r,Σ0), or in other words, the rela-
tionship between F and Σ0, necessary for solving (1.126), may be derived from the
equations of vertical structure.

1.6.2 Solutions to the Linear Equation of Viscous Evolution in the
Disc

If F is linearly dependent on the surface density Σ0, in other words, if νt is a
function only of radius and does not depend on the surface density, then (1.123)
becomes a linear differential equation of diffusion type. In 1952, Lüst found par-
ticular solutions to the equation of viscous accretion, proposed by his teacher von
Weizsäcker (1948), and described the principles of constructing a general solution
to both infinite and finite problems.

For a disc of infinite extension, Lynden-Bell and Pringle (1974) used a method
of superposition of particular solutions to the equation of viscous evolution and, in
particular, found Green’s functions for two types of boundary conditions at the inner
boundary. With the help of Green’s functions it is possible to find F or Σ at any mo-
ment in time and at any point for arbitrary initial conditions. The inner radius of the
disc in their solution is equal to zero. On long time scales, the dependencies in the
disc are self-similar and the accretion rate through the inner boundary declines as a
power law Ṁ ∝ t−(1+l), where the parameter l < 1. Pringle (1991) examined, with
the help of Green’s functions, an infinite disc with central inflow of angular momen-
tum. This problem describes the evolution of a disc surrounding a binary system. A
similar problem was solved by Tanaka (2011), with the difference that the inner
boundary of the disc was considered to be located at a finite, non-zero inner radius.
King and Ritter (1998) studied the evolution of a disc with finite radius and constant
νt, and found that the accretion rate declines exponentially with time. The problem
of a finite disc was also studied numerically in Zdziarski et al (2009). The special
case of Green’s function for a finite disc was constructed in Wood et al (2001) for
a zero inner boundary. The full Green’s function, which can be used together with
an arbitrary initial distribution for two types of boundary conditions, was found by
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Lipunova (2015). This work also described the procedure of constructing a solution
with non-zero and variable accretion rate at the outer boundary.

Note that in all these cases, the characteristic viscous time scale τvis ∼ r2/νt is
constant in time.

1.6.3 Evolution of an Infinite Viscous Disc

Let us recall the solution obtained by Lynden-Bell and Pringle (1974). We write
the kinematic viscosity coefficient in the form

νt = ν0 rb .

Then the relation F = 3π hνtΣ0 (cf. (1.122)) may be written in the following way:

F = 3π hν0 Σ0 rb . (1.127)

For a Keplerian disc (h ≡ h∗), the equation of viscous torque (1.123) takes the fol-
lowing form:

∂F
∂ t

=
3
4

ν0 h2b−2 (GM)2−b ∂ 2F
∂h2 , (1.128)

or in a way similar to the notation in Lynden-Bell and Pringle,

∂ 2F
∂h2 =

1
4

(
κ

l

)2
h1/l−2 ∂F

∂ t
, (1.129)

where the constant parameters are related in the following way:

1
2 l

= 2−b , κ
2 =

16 l2

3ν0 (GM)1/2l . (1.130)

The general solution to the linear equation (1.129) may be found by expansion in
eigenfunctions and superposition of particular solutions. The method of superposi-
tion allows for a general solution, satisfying the given initial or boundary conditions.
In the case of a linear equation, the method of separation of variables may also be
used.

We will search for a particular solution of the form F(h, t) = f (hc ξ )×exp(−st),
where s is some constant of the same dimension as that of the inverse time, ξ = h/hc,
and hc is some characteristic value of the specific angular momentum of the matter
in the disc. Substituting such a function F(h, t) into (1.129), we obtain a Lommel’s
transformation of the Bessel equation (see Sect. 4.31 in Watson (1944)):

d2 f
dh2 +

s
4

(
κ

l

)2
h1/l−2 f = 0 ,

with the particular solution
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f (x) = (k x)l [A(k)Jl(k x)+B(k)J−l(k x)] ,

where Jl and J−l are Bessel functions of non-integer order, k2 = sκ2 h1/l
c and l are

constants and x = ξ 1/2l = (h/hc)
1/2l , where ξ is the normalised specific angular

momentum. The general solution is equal to the superposition of particular solutions
with all values of the parameters k, A(k), B(k) such that the specific boundary and
initial conditions are satisfied:

F(h, t) =
∞∫

0

exp

(
− k2 t

κ2 h1/l
c

)
(kx)l [A(k)Jl(k x)+B(k)J−l(k x)]dk . (1.131)

For example, the condition F(h) = 0 for h = 0 leads to the vanishing of all coeffi-
cients for Bessel functions with negative index: B(k)≡ 0.

The following method was used to determine the coefficients A(k) and B(k). Let
us choose a solution at t = 0, with the condition that all viscous stresses at the centre
are equal to zero F(h = 0) = 0, and write it using (1.131) in the form

F(h, t = 0) =
∞∫

0

(kx)l A(k)Jl(k x)dk .

We now use the Hankel inversion theorem (chapter II, theorem 19 in Sneddon
(1951), see also Watson (1944) and MacRobert (1932)) for continuous functions
f (k) in the form

f (k′) =
∞∫

0

xJl(k′x)

 ∞∫
0

k f (k)Jl(k x)dk

dx for l ≥−1 .

Substituting f (k)= kl−1 A(k), we see that the integral within square brackets is equal
to F(h, t = 0)/xl . It follows that

(k′)l−1 A(k′) =
∞∫

0

F(h)Jl(k′ x)x1−l dx , (1.132)

where F0(h)≡ F(h, t = 0). From here we can determine the coefficients A(k′).
If the initial distribution F0(h) is given, then the solution to the linear differential

equation (1.129) has the form

F(h, t) =
∞∫

0

G(h,h1, t)F0(h1)dh1 ,

where G is the Green’s function that is the solution to (1.129) at all points for h 6= h1
and t 6= 0, and for which it is true that G = 0 for t < 0 in physical systems. It is pos-
sible to consider Eq. (1.129) as a linear system with input signal F0(h1) and output
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signal F(h, t), in which the Green’s function has the role of a ‘weighting function’.
As is well known, the Green’s function itself is a ‘response’ of the system to a delta
impulse input signal, that is, it is a solution to (1.129), if the initial condition is a
Dirac δ -function:

F0 = δ (x− x1); F(h, t) = G(x,x1, t) .

Substituting this initial distribution into (1.132), we find an expression for A(k):

A(k) = (k x1)
1−l Jl(kx1) .

To obtain the Green’s function we substitute A(k) in expression (1.131):

G(x,x1, t) = xl x1−l
1

∞∫
0

exp

(
− k2 t

κ2 h1/l
c

)
k Jl(kx1)Jl(kx)dk .

The integral is found using Hankel’s tables for integral transforms:

G(x,x1, t) =
κ2 h1/l

c xl x1−l
1

2 t
exp
(
−x2

1 + x2

4t
κ

2 h1/l
c

)
Il

(xx1

2t
κ

2 h1/l
c

)
, (1.133)

where Il is a modified Bessel function of the first kind (an Infeld function) Fig-
ure 1.11 shows the Green’s function at four moments in time.

Fig. 1.11 The Green’s function (1.133), found by Lynden-Bell and Pringle (1974), at four moments
in time: t1 = 0.001, t2 = 0.03, t3 = tmax = 0.1875 and t4 = 1. The parameters of the solution are
κ = 1, hc = 1, l = 1/3, x1 = 1.
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Let us choose the initial distribution F0 in the form of a Dirac delta function
with a physically motivated normalisation. We assume that the initial configuration
is a narrow ring at radius rs with total mass M0. The specific angular momentum
at this radius is equal to hs = x2l

s hc. We write down the surface density for t = 0
as Σ0(h, t = 0) = M0δ (r− rs)/2πrs. Using (1.127) and (1.130) we obtain for the
earlier introduced variable x = (h/hc)

1/2l :

F0(x) = 2 l M0 h1−1/l
c κ

−2 x2l−1
s δ (x− xs) .

Here we used the equality δ (x− xs)dx = δ (r− rs)ds. The evolution of this narrow
ring is determined with the help of the obtained Green’s function:

F(x, t) =
∞∫

0

F0(x1)G(x,x1, t)dx1

and has the explicit form:

F(x, t) =
M0 hc l (xxs)

l

t
exp
(
−x2

s + x2

4t
κ

2 h1/l
c

)
Il

(xxs

2t
κ

2 h1/l
c

)
. (1.134)

We now consider the accretion rate at the inner boundary Ṁin = (∂F/∂h)|h→0:

Ṁin(t) =
x1−2l

2 l hc

∂F(x, t)
∂x

∣∣∣
x→0

=
M0 τ l

e

Γ (l)
e−τe/t

t1+l .

It is possible to rewrite the accretion rate using its peak value

Ṁin(t) = Ṁin,max

(
τpl

t

)1+l
e−τe/t ,

where we have introduced the characteristic time scale for exponential growth τe
and power-law decline τpl:

τe =
κ2 h1/l

s

4
=

1+ l
e

τpl .

The accretion rate reaches its peak value

Ṁin,max =
Mdisc

tmax

(1+ l)l

e1+l Γ (l)
(1.135)

at time

tmax =
κ2 h1/l

s

4(1+ l)
=

τpl

e
. (1.136)
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1.6.4 Solution for a Disc with a Fixed Outer Radius

The boundary conditions are of high importance for the type of solution to
Eq. (1.128). Above, we considered a solution in which the disc increases in size
without limitation. A part of the matter in the disc will with time acquire very high
values of the specific angular momentum. In a number of astrophysical situations,
it is clear that it is necessary to set conditions at a finite radius from the centre. This
concerns generally discs in binary systems. The torque of tidal forces, appearing
due to gravitational influence of the companion star and acting predominantly in
the narrow area inside the Roche lobe, leads to the disc being truncated at a certain
radius (Papaloizou and Pringle 1977; Paczynski 1977; Ichikawa and Osaki 1994;
Hameury and Lasota 2005). Near the truncation radius, angular momentum is trans-
ferred from the disc to orbital motion of the binary system.

Thus, the problem now needs to be solved for a finite interval. The method of
superposition of partial solutions is modified, and the general solution is found not
as an integral (1.131), but as a sum of all the partial solutions that fulfill the specific
boundary conditions (Lüst 1952):

F(x, t) =
∞

∑
i=1

e−t k2
i κ−2 h−1/l

out (ki x)l [Ai Jl(ki x)+Bi J−l(ki x)] , (1.137)

Here we have also changed the characteristic value of the specific angular momen-
tum to the value at the outer boundary hout, where the dimensionless parameter
x = 1.

Let us set the boundary conditions at the outer radius of the disc:

∂F
∂h

= Ṁout(t) at h = hout . (1.138)

In the simplest case, if Ṁout(t) = 0, this will be a homogeneous Dirichlet boundary
condition. At the inner radius, we consider the same condition as earlier: F(h) = 0
for h = 0. The use of these two conditions gives an equation that every particular
solution has to satisfy, that is, for any k

l Jl(ki)+ ki J′l (ki) = 0 . (1.139)

Since there in the series, representing the general solution, remain only terms
with Bessel functions of positive order, the general solution at the starting point
t = 0 is:

F(x,0) =
∞

∑
i=1

(ki x)l Ai Jl(ki x) . (1.140)

Series of the form
∞

∑
i=1

kl
i Ai Jl(ki x) with the condition (1.139) are called Dini

series (see Watson 1944, Sect. 18.11). The function f (x) = F(x,0)x−l can be ex-
panded in Dini series if it satisfies the Dirichlet conditions at the given interval, and
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the coefficients of the expansion can be found as kl
i Ai = 2 f̄J(ki)J−2

l (ki) (Watson
1944; Sneddon 1951), where we have used the finite Hankel transform

f̄J(ki) =

1∫
0

x f (x)Jl(ki x)dx .

To find the Green’s function, we search for a solution to an initial condition of
the form of a δ -function: F(x,0) = δ (x−x1). Using its properties, substituting f (x)
into the last expression, we get:

kl
i Ai = 2x1−l

1
Jl(ki x1)

J2
l (ki)

. (1.141)

In this way we obtain the Green’s function for a finite disc (Lipunova 2015):

G(x,x1, t) = 2xl x1−l
1 ∑

i
e−t k2

i κ−2 h−1/l
out

Jl(ki x1)Jl(ki x)
J2

l (ki)
, (1.142)

where ki are the positive roots of the transcendental equation (1.139) and x =
(h/hout)

1/2l . The Green’s function is depicted in Fig. 1.12 for a few moments in
time. The curve at t3 = tmax (see (1.136)) corresponds to the maximum accretion
rate through the inner boundary of the disc.

Fig. 1.12 Green’s function of a finite disc with a zero torque at the centre at times t1 = 0.001, t2 =
0.01, t3 = t∞

max = 3/64, t4 = 0.1, t5 = 0.3. The ring of matter was located at xs = (h/hout)
1/2l = 0.5

at time t = 0. The parameters are κ = 1 and l = 1/3.
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For a specific initial distribution F(x,0), the distribution at any point in time t > 0
can be found as

F(x, t) =
1∫

0

F(x1,0)G(x,x1, t)dx1 . (1.143)

The accretion rate at any point in time t > 0 is

Ṁ(x, t) =
1∫

0

F(x1,0)GṀ(x,x1, t)dx1

/
hout , (1.144)

where the Green function for the accretion rate is

GṀ(x,x1, t)≡
∂G(x,x1, t)

∂x2l =

=
(xx1)

1−l

l ∑
i

e−t k2
i κ−2 h−1/l

out ki
Jl(ki x1)Jl−1(ki x)

J2
l (ki)

.
(1.145)

The functions G and GṀ in the particular case of x1 = 1 are found in the form of
analytical asymptotics by Wood et al (2001).

The initial distribution F can be expressed through the distribution of surface
density, using (1.127) and (1.130):

F(x,0) =
16π l2

κ2 h1/l r2
Σ(r)h , (1.146)

where r = h2/GM and h = hout x2l .
For large times t, the first term in the sum (1.145) dominates and the time depen-

dence can be expressed as a simple exponential:

GṀ(0,x1, t)
∣∣∣
t>tvis

=
kl

1 x1−l
1

2 l Γ (l)
Jl(k1 x1)

J2
l (k1)

exp
(
− t k2

1
2 l tvis

)
.

The characteristic time scale for exponential decrease of the accretion rate is equal
to:

texp = h1/l
out

κ2

k2
1
=

16 l2

3k2
1

r2
out

νout
, (1.147)

where we have taken into account that νout = ν0 rb
out. In Table 1.3, the first zero k1 of

the equation is shown for typical values of l. The table also provides the coefficients
for calculating characteristic time scales for the growth (1.136) and the exponential
decay (1.147) of the solution.

The disc becomes quasi stationary (i.e. the accretion rate practically does not
change with radius) in regions where r/rout < (t/texp)

2 l . The establishment of quasi
stationarity in the central regions of the disc on viscous time scales is a common
property for discs with any type of viscosity.
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Bright X-ray flares, known as outbursts of X-ray novae, are observed in binary
systems consisting of a compact object and a low-mass normal star. It is well known
that in the ‘simplest’ cases, outbursts in X-ray novae show lightcurves with a fast rise
and an exponential decay, which are called FRED profiles (Chen et al 1997). Such
lightcurves are nicely produced within the framework of the model for viscous discs
with a viscosity coefficient constant on time scales of the order of tvis (Fig. 1.13).
This is explained by the fact that on time scales of the order of one to two tvis, a
non-stationary α-disc and a disc such as considered in this section show similar
evolution.

Table 1.3 Parameters of the Green function for a non-stationary disc. The columns are: Exponent
in the power law ν ∝ rb; l from expression (1.130); the first zero of Eq. (1.139); the numerical
factor from (1.136) the numerical factor from (1.147); the parameter describing the radial profile,
a0 = Ṁin hout/Fout. The solution to the linear equation may apply to α-discs on timescales of the
order of or shorter than the viscous timescale. For α-discs the type of opacity is shown.

b l k1 tmax(r2
s /νs)

−1 texp(r2
out/νout)

−1 a0 Comments
0 1/4 1.0585 1/15 0.298 1.267 ν = const

1/2 1/3 1.2430 1/9 0.383 1.363 α−disc with h/r = const
3/5 5/14 1.2927 0.125 0.407 1.392 α−disc, τT� τff
3/4 2/5 1.3793 0.152 0.449 1.444 α−disc, τff� τT

1 1/2 1.5708 2/9 0.540 1.571 F(h) ∝ sin((π/2)h/hout)
2 ∞ — — — — tvis independent of r

Fig. 1.13 Normalised lightcurves of the X-ray novae GRO J0422+32 (1992), A 0620-00 (1975),
GS 1124-68 (1991), GS 2000+25 (1998) from Chen et al (1997), 4U 1543-47 (2002) and XTE
J1753.5-0127 (2005)(results from ASM/RXTE). The X-ray energy range for each flare is indicated
in the plots. The solid curves show the peak-normalised accretion rates through the inner boundary
calculated according to (1.144) for l = 2/5 and texp as indicated for each flare. The initial distribu-
tion of surface density in the disc is Σ ∝ r and the initial inner radius of the hot zone is 0.01× rout.
For A 0620-00, two model lightcurves are shown, for inner radii, at t = 0, 0.001× rout (solid line)
and 0.3× rout (dotted line), respectively. Figure from Lipunova (2015).
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In order to fit the constant-viscosity solution to the evolution of a viscous α-disc,
it is necessary to estimate the most appropriate value of parameter b in (1.128).
This can be done using the relation (1.40) between the kinematic viscosity and the
turbulence parameter:

νt = ν0 rb ' 2
3

α ωK r2
( z0

r

)2 1
Π1

, (1.148)

where the parameter Π1 shows up from a consideration of the vertical structure, see
(1.99). The solution for a stationary disc with dominant gas pressure and Kramers
opacity gives z0/r ∝ r1/8 (see (1.110)), thus b ' 3/4 or, equally, l ' 2/5, if we
neglect the dependence of the disc thickness on the accretion rate.

One can estimate α for an X-ray nova using (1.147) and (1.148) (Lipunova and
Malanchev 2017):

α ∼ 0.15
(

rout

2R�

)3/2( z0/rout

0.05

)−2( M
10M�

)−1/2( texp

30d

)−1
×Π1 . (1.149)

Here, one should substitute z0 corresponding to the peak of an X-ray nova outburst.
The main uncertainty in the above formula is the radius of the disk. In addition,
the evolution of the thickness of the α-disk leads to a variation of the numerical
factor in (1.149). However, a numerical modelling of the disk evolution can provide
a self-consistent value of α (see Sect. 1.7.3).

1.6.5 Solution to the Non-linear Equation for the Evolution of a
Viscous α-Disc

Earlier we considered the case when the coefficient of kinematic viscosity de-
pends solely on the radial coordinate in the disc. In the more general case, we may
represent νt as a power-law function of Σ and r. Such a dependence arises in partic-
ular if we consider discs with α-viscosity. In this case, (1.123) becomes a non-linear
differential equation in partial derivatives. To search for a solution to such an equa-
tion, similarity methods can be used in many cases. A self-similar solution to a
non-linear differential equation accurately describes the evolution if enough time
has passed since the initial moment.

As we have seen in the previous section, self-similar solutions to a linear differ-
ential equation are characterized by the possibility to completely separate the time
and coordinate parts of the solution. A particular solution is thus a product of func-
tions of different variables. In the case of a nonlinear differential equation, such a
simple separation is in general not possible. To approach the problem, we may use
the method of introducing new dimensionless variables (parameters), which contain
combinations of the dimensional parameters (for example time and coordinates)
raised to various powers.
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Self-similar solutions to non-linear differential equations can be divided into two
kinds (Barenblatt 1996, 2003). The self-similar solution is of the first kind if the
self-similar function, as well as the new dimensionless parameter, can be derived
from dimensional analysis. This case is also called a complete self-similarity. The
second kind, or incomplete self-similarity, is the more general case. Here the self-
similar function is a particular solution to the problem itself (a non-linear eigenvalue
problem, see Zeldovich and Raizer (1967)). A dimensional analysis does not allow
us to determine the self-similar function, and in particular, find to which powers the
dimensional parameters should be raised to produce a self-similarity dimensionless
variable. For incomplete self-similarity, the type of solution depends on the value of
the self-similar variable.

If the constant coefficients in a self-similar function can be found from con-
servation laws, then the self-similar solution will be of the first kind (for example
energy conservation in J. I. Taylor’s blast wave (Barenblatt 2003)) and conserva-
tion of the total angular momentum in an accretion disc (see further Sect. 1.6.6.3)).
Self-similar solutions of the first kind were found for accretion discs with a non-
linear viscous diffusion equation in the stage of evolution when the accretion rate
is decaying (Pringle 1974, 1991). Solutions of the second kind have also been con-
structed (Lyubarskij and Shakura 1987). These solutions apply to an an earlier evo-
lutionary stage, that is, the spreading of an original ring of matter into a disc around
the gravitating centre.

The form of the turbulence parameter νt is determined by the physical structure of
the disc, which is dependent on the astrophysical conditions. For an α-disc with two
variants of opacity (Kramers’ law and Thomson scattering), within the framework
of self-similar solutions of the first kind, it was found that the accretion rate declines
as ∝ t−19/16 and ∝ t−5/4, respectively (Pringle 1974; Filipov 1984; Lyubarskij and
Shakura 1987; Cannizzo et al 1990; Pringle 1991). Lin and Pringle (1987) consid-
ered a molecular disc with a gravitational instability generating an effective viscos-
ity νt ∝ Σ 2 r9/2, and found that Ṁ ∝ t−6/5. Lin and Bodenheimer (1982) studied the
evolution of a protoplanetary disc under the influence of convective turbulent vis-
cosity (νt ∝ Σ 2), for which Ṁ ∝ t−15/14. Ogilvie (1999) investigated an advective
accretion flow, the structure of which considerably differs from that of a thin viscous
disc, and, using similarity methods, found a solution in the case of conserved total
angular momentum.

The type of solution also depends on the boundary conditions. Pringle (1991) in
addition considered the general case of an infinite cold protostellar disc with νt ∝

Σ 3 and a central source of angular momentum. Such a formulation of the problem
corresponds to the evolution of a disc around a young binary system (see also Ivanov
et al (1999)). In Rafikov (2013), a detailed consideration of the evolution of discs
around binary black holes was presented, and self-similar solutions were found with
different conditions at the inner boundary, suggesting a certain mass transfer through
the inner boundary. Rafikov (2016) built self-similar solutions for a ‘decretion’ disc
(disc with mass ejection from the centre).

For a disc with a zero (or very small) viscous stress at the inner boundary and
with a limited outer radius, a solution was found by Lipunova and Shakura (2000).



64 Galina Lipunova, Konstantin Malanchev, and Nikolay Shakura

According to them, Ṁ ∝ t−10/3 for Kramers opacity and Ṁ ∝ t−5/2 for Thomson
scattering (see Sect. 1.6.7 below).

If νt = ν0 Σ a rb, the kinematic viscosity coefficient is not constant in time since
the surface density varies. The relation F = 3π hνt Σ0 (cf. (1.122)) can be presented
in the following way:

F = 3π hν0 Σ
a+1
0 rb . (1.150)

Then, for a Keplerian disc (h≡ h∗), Eq. (1.123) takes the following form:

∂F
∂ t

= D
Fm

hn
∂ 2F
∂h2 , (1.151)

where D is a dimensional constant,

D =
a+1

2
(GM)2

(
3
2

ν0

(2π)a (GM)b

)1/(a+1)

, (1.152)

and m and n are dimensionless constants,

m =
a

a+1
, n =

3a+2−2b
a+1

.

The values of the parameters D, m and n may be determined from the equations
of vertical structure. The parameter D in (1.151) can be seen as a sort of ‘diffusion
coefficient’. It may be found from the relation between Σ0, F and h (Filipov 1984;
Lyubarskij and Shakura 1987):

Σ0 =
(GM)2 F1−m

4π (1−m)Dh3−n . (1.153)

Comparing the equation of disc evolution in the linear and non-linear cases, (1.129)
and (1.151), we find that D = 4(l/κ)2 for m = 0.

The non-linear problem of non-stationary accretion has the following distinctive
features. Firstly, the self-similar solutions of the second kind exist only for m 6= 0.
Secondly, self-similar solutions of the first kind in the third stage, while they exist for
m = 0, have an exponential profile for r→∞, characteristic for linear problems (see
for example Lynden-Bell and Pringle 1974). For m 6= 0, the boundary of the disc is
fully determined4.

1.6.5.1 The α-Discs

Lyubarskij and Shakura (1987) give the equations of vertical structure in a form
similar to (1.99). The opacity is given as:

4 This property is similar to the one that arises in problems of thermal conductivity, when, due
to the non-linearity, the heatwave boundary sharply separates the heated zone from the rest of the
region (Zeldovich and Raizer 1967).
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κ = κ0
ρς

Tg .

After a few algebraic manipulations of the equations in the right column of
(1.99), we may find the relation between Σ0, Wrϕ r2 and ω r2, which together
with (1.153) gives5:

D=
1

4(1−m)(2π)m

{
26+ς+2gα8+ς+2g

Π
ς

1 Π
2ς

2 Π
8+ς+2g
3 Π 2

4

(
ℜ

µ

)8+2g ( 9κ0

8ac

)2

(GM)12+8ς

} 1
10+3ς+2g

,

(1.154)
where

ς =−11m−2n−2
7m−n−1

, g=−1
2

37m−4n−10
7m−n−1

(1.155)

or
m =

4+2ς

10+3ς +2g
, n =

12+11ς −2g
10+3ς +2g

(1.156)

(see Table 1.4).

Table 1.4 Dimensionless parameters in the equations of non-stationary accretion for different
forms of νt. The parameter αpl is the power-law index of the time-dependence during the stage
of declining accretion in an infinite disc: Ṁ ∝ tαpl .

m n a b ς g αpl
κT� κff and (1.94) 2/5 6/5 2/3 1 0 0 −19/16
κff� κT and (1.94) 3/10 4/5 3/7 15/14 1 7/2 −5/4
OPAL Iglesias and Rogers (1996),
full ionization of H and He

1/3 1 1/2 1 1 5/2 −11/9

convective turbulence Lin and Boden-
heimer (1982)

2/3 8/3 2 0 — — −15/14

molecular disc with gravitational in-
stability Lin and Pringle (1987)

2/3 −1/3 2 9/2 — — −6/5

It is important to note that the ‘diffusion coefficient’ D is only weakly depen-
dent on the opacity coefficient: as a power function of κ0 with an index of 1/5 or
1/10. This reduces the impact of the uncertainty due to the dependence of the real
opacity on the disc parameters. The combination of parameters Π1,2,3,4 in (1.154)
depends only weakly on the optical depth τ , i.e. on the radius in the disc (see Ta-
bles 1.1 and 1.2). Thus, D may be considered a constant in the basic equation of
non-stationary accretion (1.151).

5 Note that here F is a factor of 2π larger than in the paper by Lyubarskij and Shakura (1987), and
our quantity D is smaller by a factor of (2π)m.
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1.6.6 Evolution of α-Disc from a Ring of Matter

It turns out that the global evolution of the disc can in general be divided into
three stages: (1) the stage of formation of the disc from an initial ring made up
of matter at some radius, (2) the establishment of a quasi-stationary distribution
of parameters in the disc, and as a special case, increasing accretion rate onto the
central body, and (3) ‘spreading’ of the disc away from the centre, accompanied by
a decrease of the accretion rate.

The ring of matter around a star may be formed as a result of a mass-transfer
from the neighbouring component in a binary system. In the presence of effective
mechanisms of viscosity, the differentially rotating ring starts to smear out into a
disc.

Fig. 1.14 Illustration by Lyubarskij and Shakura (1987) of the process of evolution of non-
stationary disc accretion in the form of the dependence of viscous torques acting between adja-
cent(change everywhere!) rings of the disc, as a function of the specific angular momentum: a —
stage of formation and inward motion of self-similar ‘tounge’, b — stage of formation of quasi-
stationary regime, c — stage of accretion decay. Dashes denote the regions into which the material
was ejected and in which the solution is non self-similar. Each figure shows the distribution for
three consecutive moments in time t1, t2, t3. The calculated dependencies are shown in Figs. 1.16
and 1.17.
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At the first stage, material from the inner edge of the ring, losing angular momen-
tum to the outer layers, starts to move towards the centre. In the region r� Rout,
the flow evolves into some self-similar regime whose characteristics are indepen-
dent of the initial mass distribution profile. The inner edge of the disc, which has the
form of a stretched-out ‘tounge’, reaches the accreting centre in a finite time (Fig.
1.14, a). The self-similar solution breaks down close to the radius of the innermost
stable orbit around the black hole, or close to the magnetosphere of the neutron
star. Nevertheless, after some transition period, accretion again evolves into another
self-similar solution, the regime of quasi-stationary accretion (the second stage).

At the second stage, a practically radially constant distribution is rapidly estab-
lished in the inner regions of the disc, by virtue of the small viscous time scales at
small radii. The region of the quasi-stationary solution gradually expands outwards
(Fig. 1.14, b), while the accretion rate gradually increases in time. Meanwhile, in
the outer region, conditions remain close to the original.

Further, the disc gradually evolves into the third final stage (the decay stage, Fig.
1.14, c) at which the details of the initial distribution are ‘forgotten’, and only some
integral quantities conserved during the accretion are important in finding the self-
similar solution. This final stage is described by a self-similar solution of type I,
whereas the two preceding cases are described by self-similar solutions of type II,
i.e. solutions in which the self-similarity index is found not from dimensionality
arguments but in the process of integrating the ordinary differential equation for the
representative function (Lyubarskij and Shakura 1987).

Thus, each stage is characterized by the motions whose distinctive property is a
similarity that is conserved in the motion itself. This means that the distribution of
any quantity, for example, the viscous torque, may be represented in the form:

F(h, t) = hA1 tA2 f (ξ ) , (1.157)

where f is a function of a single self-similar variable ξ =C hA3 tA4 . For completely
self-similar solutions, the parameters C and A1..4 may be determined from dimen-
sional arguments or from conservation laws. To determine the parameters for non
completely self-similar solutions, a non-linear problem should be solved; in addi-
tion, the obtained parameters will depend on h and t.

1.6.6.1 ‘Tounge’-formation Stage

Let us assume that the radius of the inner edge of the disc rin or the equivalent
value hin decreases as a power law hin ∝ (−t)γ (t = 0 when the centre is reached,
thus the minus sign). As seen from equation (1.151), the combination DFm t/hn+2

is dimensionless, which permits the solution to be represented as

F(h, t) =
h(n+2)/m

(−Dt)1/m y(ξ ) ; 1≤ ξ =
h

A(−t)γ
≤ ∞ , (1.158)
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where y(ξ ) is the representative function of the single self-similar variable ξ . It is
not possible for the dimensionless variable ξ to be a combination of h, t and D, so we
have to introduce the additional constant A of dimensionality [cm2s−(1+γ)], where
the previously unknown exponent γ must be determined in the course of solving the
problem. We thereby arrive at a self-similar problem of the second kind, similar to
the problem of a converging shock wave (Zeldovich and Raizer 1967; Barenblatt
1996).

Substituting (1.158) into (1.151), we obtain an ordinary differential second-order
equation for the representative

ym [
ξ

2y′′+
2(n+2)

m
ξ y′+

(n+2)(n+2−m)

m2 y
]
− γξ y′− y

m
= 0

which can be characterised as an equation for a non-linear oscillator with dissipation
(if γ is positive).

The boundary conditions are determined in the following manner. It is evident
that the accretion rate through the inner edge of the ring can be considered to equal
zero. Thus, at the inner boundary hin (corresponding to ξ = 1), both the function
F(hin, t) and its derivative ∂F(hin, t)/∂h must vanish (cf. (1.125)). Otherwise, a δ -
source (sink) appears with the substitution into Eq. (1.151). Consequently, we have
two conditions:

y(1) = y′(1) = 0 .

Another condition follows from the requirement that all physical quantities remain
finite at time t = 0 (when the ‘tounge’ reaches the accreting centre), at any finite
radius. It follows from (1.158) that F(h, t) does not diverge as t→ 0 and h 6= 0 only
if

y(ξ = ∞) = 0 .

Thus, the solution of the second-order equation must satisfy three conditions, which
is possible only for a specific value of γ .

Let us investigate qualitatively the equation for the representative function. For
this we turn to the variable x = lnξ+C (substituting C will not affect the resulting
system of equations (1.159), but is important for adjustment of the solutions). The
derivative with respect to x will be denoted by a dot. We write the resulting system
of two equations of the first order:

ẏ = p ,

ṗ =
y1−m

m
+ γy−m p− (n+2)(n+2−m)

m2 y− 2n+4−m
m

p . (1.159)

We are interested in the solution which leaves the origin of the plane (p,y) at ξ = 1
and returns there at ξ = ∞. For y� 1 and p� 1, the system (1.159) has asymptotic
solutions of the form

p =
γ

1−m
y1−m ; y =

(
γ m

1−m
lnξ

)1/m
, (1.160)
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p =− y
γ m

; y = ξ
− 1

γ m . (1.161)

The functions (1.160) give asymptotics when ξ → 1 and (1.161) when ξ → ∞, re-
spectively. The phase trajectories of the solutions to the equations are shown in
Fig. 1.15 for four values of γ .

Fig. 1.15 Phase portrait of the system of equations (1.165) for different values γ . The arrows
indicate the direction of change in ξ from 1 to ∞ (x from C to ∞). (a) For γ < γcr the solution inside
the separatrix, shown by the bold curve, reaches the stationary point (focus) on the horizontal axis
(0,y0). (b) A closed solution is found for γ = γcr and coincides with the separatrix. The separatrix
at the same time forms a limit cycle of solutions in the region bounded by it, for x→ −∞. (c)
For γcr < γ < γ+, the separatrix (bold curve) is gradually compressed. (d) For γ = γ+ it is moving
towards the point (0,y0).

Each point for which ẏ = 0 and ṗ = 0 is a singular point. There is a stable focus
in the phase plane with coordinates

p = 0 , y0 =
[ m
(n+2)(n+2−m)

]1/m
.
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For a certain γcr, there exists a closed solution (Fig. 1.15, b). Numerical investigation
shows that for m = 2/5, n = 6/5 (the case κT� κff), the sought after value is γcr ≈
0.595, and for m= 3/10, n= 4/5 (κff�κT), it is γcr≈ 0.696. The phase trajectories
are rearranged for some γ+ and the stability of the focus changes (Fig. 1.15, d).

Thus, the inner boundary of the disc moves towards the centre according to the
law: hin = A(−t)γcr (see Fig. 1.16). As follows from (1.161), the asymptotic solution
of the initial equation (1.151) for ξ → ∞ (i.e. for t → 0, when the ‘tongue’ reaches
the accreting centre), has the form

F =
h

n+2
m

(−Dt)
1
m

[A(−t)γ

h

] 1
γ m

=
A

1
γcr m h

n+2
m − 1

γcr m

D1/m . (1.162)

We note that for large h, the profile F(h, t) does not change with time during the
‘tongue’ formation stage. By ’sewing’ the obtained self-similar solution and the
initial profile F0(h) near the radius where the material was ejected at time (−t0),
we may also determine the constant A. Within a dimensionless factor, we have from
(1.162)

A = Fγcr m
0 Dγcr/hγcr(n+2)−1

0 ,

where h0 =
√

GM r0 is determined by the initial radius of the ring r0.

1.6.6.2 Quasi-stationary Stage with Increasing Accretion

We seek a solution to (1.151) in the form:

F =
h

n+2
m

(Dt)1/m y(ξ ) , 0≤ ξ =
h

Atβ
≤ ∞. (1.163)

The time t is now positive. Substituting (1.163) into (1.151), we obtain the equation
for the representative function:

ym [
ξ

2y′′+
2(n+2)

m
ξ y′+

(n+2)(n+2−m)

m2 y
]
+βξ y′+

y
m

= 0 (1.164)

or a system of two equations

ẏ = p ;

ṗ =−y1−m

m
−β y−m p− (n+2)(n+2−m)

m2 y− 2n+4−m
m

p (1.165)

As ξ → ∞, the asymptotic solution of this system has the form

p =− y
β m

; y = ξ
− 1

βm ; (1.166)
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Fig. 1.16 Calculated profile F(h) in the Lyubarski–Shakura solution at three stages of self-similar
evolution: (a) formation of the ‘tongue’, t2/t1 = 1/4 (t is negative and approaches zero); (b) quasi-
stationary accretion, t2/t1 = 3 (t is now positive); (c) accretion decay, t2/t1 = 2. The quantities F
and h are normalised to arbitrary values. The dotted lines in the two upper panels give the symbolic
dependence of F(h) for regions where the (unknown) solution is non self-similar. The calculation
is performed for opacity parameters m = 2/5, n = 6/5.

we notice that the main contribution comes from the two last terms of (1.164). Hence
it follows that only if β = γcr, the distribution F(h, t) is the same as that at the
preceding stage (1.162). Thus, the self-similarity index remains as before. For ξ → 0
(at very large times t or at the accreting centre), there are two asymptotic solutions.
(Now the main contribution comes from the terms in square brackets in (1.164)).

p =−n+2
m

y ; y = ξ
− n+2

m , (1.167)

p =−n+2−m
m

y ; y = ξ
− n+2−m

m . (1.168)

The first corresponds to (∂F/∂h)h→0 = 0, i.e. the solution without a material sink
(Ṁh→0→ 0), while the second corresponds to an accretion rate, radially constant at
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Fig. 1.17 Calculated profiles F(h) in the Lyubarski–Shakura solution at the stages of ‘tongue’
formation (solid line) and quasi-stationary accretion (dashed line). At the first stage, we see the
movement of the inner edge of the ‘tongue’ towards the centre. In the second stage, we can see
how the zone of quasi-stationary accretion expands with time (F ∝ h). The accretion rate increases
with time from the lowest curve to the top. The quantities F and h are normalised to characteristic
values.

small h. Near the gravitating centre, the accretion rate depends on time according to

|Ṁ|=
∣∣∣∂F

∂h

∣∣∣
h→0
≈ (Atβ )

n+2−m
m

(Dt)1/m =
A

n+2−m
m t

γcr(n+2−m)−1
m

D1/m . (1.169)

It is this solution with a material sink that describes the second accretion stage in
our case (see Fig. 1.16b). We have |Ṁ| ∝ t1.67 for κT� κff while the accretion rate
increases as |Ṁ| ∝ t2.47 for κff� κT.

If we introduce the notation

Ṁ0 =
F0

h0
, τ =

hn+2
0

Fm
0 D

or τ =
hn+2−m

0

(Ṁ0)m D
,

the accretion rate Ṁ(t) onto the gravitating centre during the quasi-stationary stage
can be expressed in terms of the accretion rate Ṁ0, determined by the initial value of
the viscous torque F0 acting on the ring of matter with specific angular momentum
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h0:

Ṁ = Ṁ0

( t
τ

) γcr(n+2−m)−1
m

at t > τ .

1.6.6.3 Accretion Decay Stage. Spreading of the Disc.

We again seek a solution to (1.151) in the form (1.163), but now the variable ξ

varies within the limits 0≤ ξ ≤ 1 (ξ = 1 corresponds to the outer radius of the disc
rout or the specific angular momentum hout =

√
GMrout(t)). Thus, the solution for

this stage is described, as before, by (1.164) or the equivalent system (1.165) with
the boundary conditions y(0) = y(1) = y′(1) = 0. The value of the self-similar index
β is now found from the law of conservation of the total angular momentum of the
material in the disc. Indeed, if the ring was initially located at a radius r0, much
greater than the radius of the innermost stable orbit, then the quantity

K = 2π

rout∫
0

Σ hr dr = const . (1.170)

is conserved during the accretion process. Substituting (1.163) into (1.170), with the
use of the relationship (1.153) between Σ0 and F , we obtain

K =
1

(1−m)D

hout∫
0

F1−m hn+1dh =
A

n+2
m t

β (n+2)
m

(1−m)D1/m t
1−m

m

1∫
0

y1−m(ξ )ξ
n+2−m

m dξ .

(1.171)
From the condition ∂K/∂ t = 0, we obtain β = (1−m)/(n+2). Moreover, the ex-
pression (1.171) gives the exact relation for the constant A. For this β , the required
solution to the equation for the representative function (1.164) can be found in ex-
plicit form. The method for solution of the non-linear ordinary second order differ-
ential equation (1.164), or the equivalent system of first order (1.165), is analogous
to the solution of similar equations arising in heat propagation problems with tem-
perature dependent thermal conductivity (Zeldovich and Kompaneets 1950). Since
the equations (1.165) contain the variable x only as a differential, the order is low-
ered by introducing p(y) = dy/dx as a new unknown function of the variable y

ym
[

p
dp
dy

+
2n+4−m

m
p+

(n+2)(n+2−m)

m2 y
]
+β p+

y
m

= 0 .

It is then convenient to introduce function Z(y) = p(y)+ y(n+2−m)/m:

ym
[(

Z− n+2−m
m

y
)dZ

dy
+

n+2
m

Z
]
+β

(
Z− n+2−m

m
y
)
+

y
m

= 0 .

We seek a solution of the form Z(y) = By1−m. Collecting the coefficients of powers
of y1−m in the last equation, we obtain B=−β/(1−m). After substitution of Z(y) =
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− β

1−m
y1−m, the equation becomes a linear algebraic equation with respect to y.

The left part of the equation vanishes for β = (1−m)/(n+ 2). On the other hand,
the equality of β to this value is a necessary condition for the existence of a self-
similar solution at the stage of accretion decay (which follows from the condition
∂K/∂ t = 0). Thus,

p =− y1−m

n+2
− n+2−m

m
y

is a particular solution satisfying the boundary condition p(y = 0) =
dy
dx

∣∣∣
x=0

= 0.

Integrating this expression is elementary, and with the boundary condition y(ξ =
1) = 0, the solution can be written as

y(ξ ) =

[
m

(n+2)(n+2−m)

]1/m(
1

ξ n+2−m −1

)1/m

. (1.172)

This solution implies that the integral on the right-hand side of (1.171), which is

an Euler integral of the first kind, is reduced to the beta-function B
(n+3−m

n+2−m
,

1
m

)
with some coefficient, and the solution of the key equation (1.151) at the decay stage
finally takes the form:

F =
A

n+2
m

D1/m

[
m

(n+2)(n+2−m)

]1/m
ξ (1−ξ n+2−m)1/m

t
=

=
K m(1−m)

(n+2)B
( n+3−m

n+2−m ,
1
m

) ξ (1−ξ n+2−m)1/m

t
.

The accretion rate decays according to:

Ṁ =
∣∣∣∂F

∂h

∣∣∣
h→0

=
A

n+2−m
m

D1/m

[
m

(n+2)(n+2−m)

]1/m

t−
n+3−m

n+2 .

The exponent in the time dependence of Ṁ(t) can also be expressed through the
exponents a and b, appearing in the expression νt ∝ Σ a rb; it equals then 1+1/(5a−
2b+4). For κT� κff we have Ṁ ∝ t−19/16 and Ṁ ∝ t−5/4 for κff� κT.

At both the quasi-stationary stage and the decay stage, the total energy release in
the disc is determined primarily by the release of gravitational energy in the inner
regions of the disc. The disc luminosity is equal to ηaccr Ṁin c2, where ηaccr is the
efficiency of energy release. During the ‘tongue’ stage, the energy release depends
largely on the initial distribution F(h) since the heat flux from a unit area of the disc
surface ∝ F/h7 (cf. (1.75)).

The presented solutions describe processes in real accretion discs to some ap-
proximation. The assumption of constant opacity (or constant coefficients m and n)
does not hold for the entire disc throughout its full evolution. To completely take into
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account changes in opacity, numerical calculations are required using tabulated val-
ues of the opacity coefficients as functions of temperature and density. On the other
hand, the opacity coefficient has little effect on the presented solution, as it appears
in D as a factor raised to a very small power. It should be noted that the opacity
changes particularly strongly in regions with a variable degree of ionization.

1.6.7 Solution for α-Disc in a Binary System

As we have seen, the viscous evolution of a ring of matter eventually enters a
stage of unconstrained spreading, when parts of the matter in the disc acquire a high
angular momentum and reaches further and further from the centre. In binary sys-
tems, such spreading of the disc cannot continue indefinitely due to the gravitational
effects of the companion star. Tidal forces from the companion star force the disc to
be limited to within a certain radius from the centre inside the Roche lobe.

Lipunova and Shakura (2000) found a solution describing the evolution of an
α-disc in a binary system. The obtained solution was used to model the optical and
X-ray lightcurves of the X-ray novae A 0620-00 and GU Mus 1124-68 during the
decline after the peak of their outbursts. As a result, new constrains on the turbulence
parameter α were found (Lipunova and Shakura 2002; Suleimanov et al 2008).

The angular momentum in the region of the outer radius is transferred from the
matter in the disc into orbital motion of the binary system. Papaloizou and Pringle
(1977) showed that the tidal truncation radius is on average ∼ 0.9 times that of the
Roche lobe. This radius is close to that of the last non-intersecting periodic orbit
calculated for a three-body problem (Paczynski 1977). Numerical calculations have
shown that the tidal stress tensor is important only in a rather narrow ring close
to the outer radius. Significant perturbations in this region lead to the formation of
strong spiral shock waves (Pringle 1991; Ichikawa and Osaki 1994; Hameury and
Lasota 2005).

Since the outflow of angular momentum takes place in a narrow region close
to the tidal truncation radius, we may choose not to examine this region in detail,
considering it simply a δ -type channel. The function F grows as r1/2 at radii much
smaller than the tidal truncation radius. There, the stationary disc behaves accord-
ing to the standard model, not ‘noticing’ the outer boundary conditions, and the
dependence of the viscous torque on the radius is described by expression (1.124).

We also assume in the framework of the mathematical problem that the outer
radius of the disc does not change, and that the rate of inflow of matter to the outer
disc is negligible. The assumption that the outer radius remains unchanged is valid
for transient activity phenomena during outbursts in some types of close binary
systems. Numerical calculations, in which long-term evolution of non-stationary
discs in binary systems (X-ray and dwarf novae) is modelled (DIM, Disc Instability
Models), take into account the variability of the outer radius of the disc (Lasota
2001). During powerful flares in X-ray novae, when the brightness of the source
may increase with up to a million times, the accretion rate inside the disc may be
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considered to be much higher than the rate of inflow of matter from the companion
star. This corresponds to the vanishing of the derivative F(h, t) with respect to h at
the outer radius.

A solution to the basic equation of non-stationary accretion (1.151) for a disc
with a constant outer radius can be found using the method of separation of vari-
ables:

F(h, t) = F(t)× fF(h/h0) . (1.173)

The quantity h0 = (GM rout)
1/2 equals the specific angular momentum at the outer

edge of the disc. The above mentioned properties of the viscous torque lead to the
following conditions at the outer radius:

fF(1) = 1, f ′F(1) = 0 , (1.174)

the first of which is normalising, and the other expresses the fact that the viscous
torque has a maximum at the immediate vicinity of the disc outer radius (Fig. 1.18).
This is equivalent to the condition of zero accretion rate at rout. It can also be said
that the radial component of the velocity in the disc is zero at rout. A similar approach
was used, for example, by Pringle (1991) in a study of a disc surrounding a binary
system. At the inner edge of such a disc, the angular momentum is transferred from
the binary system into the disc, and the stars gradually move closer to each other.

Thus, tidal interactions determine the specific boundary conditions at the outer
edge of the disc, thereby not changing the form of the equation that we solve (1.123
or 1.151).

Naturally, in reality the inner edge of the disc rin 6= 0. In many situations, how-
ever, rin/rout� 1.

Using h≡ hK, we obtain from (1.125):

Ṁ(h, t) = f ′F(h/h0)F(t)/h0 . (1.175)

Substituting the product of the functions into the equation for non-stationary ac-
cretion (1.151), we obtain the time-dependent part of the solution, which gives the
following asymptotic for the disc evolution after the peak of the outburst:

F(t) =

(
hn+2

0
λ mD(t + t0)

)1/m

. (1.176)

Here, D is a dimensional constant (1.154) that may be obtained by solving the equa-
tions of vertical structure, λ is a separation constant, which may be found from the
boundary conditions imposed on fF(h/ho), and t0 is the integration constant in units
of time.

The law of accretion rate change is written as:

Ṁ(t) = Ṁ(0)(1+ t/t0)−1/m , (1.177)
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Fig. 1.18 Moment of viscous forces F as a function of the specific angular momentum h in an
accretion disc in a binary system at two moments in time. Time t2 is later than t1. The shading
illustrates the relative distribution of surface density in the disc. The accretion rate declines with
time.

where Ṁ(0) is the accretion rate at a certain moment in time t = 0, which can be
chosen as any time at the stage of declining accretion. Then, parameter t0 of the
solution is

t0 =
hn+2

0
λ mDFm(0)

,

where F(0) is the value of F(h, t = 0) at the outer radius rout. Substituting expression
(1.152) for D and taking into account that Fout = 3π h0 νout Σ0, we get:

t0 =
4

3λ a
r2

out

νout(t = 0)
, (1.178)

where a is the power of Σ in the relation νt ∝ Σ a rb.
After a separation of variables in the basic equation, we obtain a non-linear equa-

tion for fF(ξ ). It constitutes a particular case of the general Emden-Fowler equa-
tion (Zaitsev and Polyanin 2012)

d2 fF

dξ 2 =−λξ
n f 1−m

F , (1.179)

the solution to which we seek as a polynomial

fF(ξ ) = a0ξ +a1ξ
k +a2ξ

l + . . . . (1.180)
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Fig. 1.19 The solution fF (ξ ) for two cases: κff � κT (solid line) and κT � κff (dashes). The
plot also shows the function f (r), calculated using (1.102), that is included in the expression for
calculating radial dependencies of physical parameters (Sect. 1.5.3). The accretion rate practically
does not change with radius in the region, where f ≈ 1. The variable ξ = h/ho, where ho is the
specific angular momentum at the outer radius.

Substituting fF(ξ ) with the polynome into (1.179), we obtain for the second and the
third term:

k = 3+n−m, a1 =
−λa1−m

0
k(k−1)

,

l = 2k−1, a2 =
−λa−m

0 a1

l(l−1)
(1−m) .

(1.181)

Table 1.5 gives the values for the constants a0 and λ , derived from the boundary
conditions (1.174) on fF(ξ ) in the opacity regimes of pure scattering and pure ab-
sorption as well as for an approximation based on the OPAL numerical calculations
of opacity (Iglesias and Rogers 1996). The corresponding functions fF are shown
in Fig. 1.19. The OPAL case turns out to be effectively somewhere in the middle.

The value a0, included in the expression for the accretion rate

Ṁin =
Fmax

hmax
a0 ,
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Table 1.5 Parameters of the analytical solution, presented by (1.176), (1.177), and (1.180), for the
truncated α-disc decay.

m n λ a0 a1 a2 k l
κT � κff 2/5 6/5 3.482 1.376 −0.396 0.019 3.8 6.6
κff � κT 3/10 4/5 3.137 1.430 −0.460 0.030 3.5 6.0
OPAL 1/3 1 3.319 1.400 −0.425 0.025 11/3 19/3

can also be calculated for the self-similar solution by Lyubarski & Shakura during
the concluding stage of disc decay (Sect. 1.6.6.3). Omitting the details, we only
mention that in an unconstrained disc, hmax likewise corresponds to the maximum
torque Fmax. It is remarkable that the values of a0 differ only by 2% between a
constrained and an unconstrained disc. This means that the profile F(h),in the region
of the disc where F(h) increases, is practically independent of the conditions outside
this region.

1.6.7.1 Radial Dependencies for a Non-stationary Disc in a Binary System

Let us find the expressions for the evolution of physical parameters in the disc,
using equations (1.99), (1.153), (1.154), and (1.176).

Note that the relations (1.104) and (1.110) contain another function, f (r) without
an index. Function f (r) is determined by relation (1.102). In the case of a stationary
disc, we have fF = ξ f . In the case of a disc with a radially variable accretion rate,
for example a non-stationary disc, fF = a0 ξ f (r) (see Fig. 1.19).

Below, we derive expressions for the diffusion parameter D, surface density Σo,
temperature in the central disc plane Tc, relative half-thickness z0/r, and optical
depth τ . We use for the mass of the compact object mx = M/M�. The values Π1..4
should be chosen according to the appropriate opacity regime. The parameter t0
depends on the accretion rate at t = 0:

t0 =
hn+2−m

0 am
0

λ mDṀm
in(t = 0)

. (1.182)

It is important to remember that t0 depends on the type of opacity.

Scattering-dominated Opacity Regime (κT � κff)

Substituting the numerical values of the constants into (1.154), we obtain:

D [cm28/5/g2/5/s17/5] = 1.40×1038
α

4/5 m6/5
x

(
µ

0.5

)−4/5
Π
−1
Σ

κ1/5
T , (1.183)

with the help of which we re-write (1.182):
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t0 [days] = 24.12α
−4/5

(
rout

R�

)7/5 (Ṁin(t = 0)
1018g/s

)−2/5

m1/5
x

(
µ

0.5

)4/5
ΠΣ κ−1/5

T ,

(1.184)
where (1.95) determines κT. Substituting the combination Min t1/m

0 from (1.184)
into the expression for the declining accretion rate Ṁ(t) = Ṁ(0)(1+ t/t0)−1/m, and
further the accretion rate and the function f (r) = fF/(a0

√
r/rout) into the radial

dependencies (1.104) in zone B, we obtain the radial dependencies of the physical
parameters in a non-stationary α-disc:

Σ0 [g/cm2] = 2.2×102
α
−2 m1/2

x

(
t + t0
10d

)−3/2 ( rout

R�

)3/2 ( r
rout

)−9/10

f 3/5
F ×
(1.185)

×
(

µ

0.5

)2
κ−1/2

T ΠΣ
5/2 ,

Tc [K] = 1.8×104
α
−1 m1/2

x

(
t + t0
10d

)−1 ( rout

R�

)1/2 ( r
rout

)−11/10

f 2/5
F

µ

0.5
Π3 ,

(1.186)
z0

r
= 0.04 α

−1/2 m−1/4
x

(
t + t0
10d

)−1/2 ( rout

R�

)3/4 ( r
rout

)−1/20

f 1/5
F (Π1 Π3)

1/2 ,

(1.187)
The dimensionless constants ΠΣ , Π1..4 were introduced in Sect. 1.5.2 where we con-
sidered the vertical structure of the α-disc. Their interrelations are determined by
expression (1.105), in particular Π3 = ΠT ΠΣ and (Π1 Π3)

1/2 = Πz Π
1/2
Σ

, and their
values can be found in Table 1.1 and in Fig. 1.8. The effective optical depth of the
disc can be estimated with the help of τ∗:

τ
∗ =

(
κ0,Tκ0,ff ρc

T 7/2
c

)1/2

Σ0 = 1.5×102
α
−1
(

t + t0
10d

)−1/4( rout

R�

)1/2

×

×
(

r
rout

)1/10

f 1/10
F

(
µ

0.5

)5/4
κ−1/4

T

(κ0,ff

1022

)1/2
(

Π 4
3 Π 3

4

Π1 Π 2
2

)1/4

,

where the units of κ0,ff are [cm2K7/2/g2].

Absorption-dominated Opacity Regime (κff � κT)

This regime is established at lower temperatures and densities. In a similar fash-
ion, we obtain:

D [cm5/g3/10/s16/5] = 2.41×1034
α

4/5 mx

(
µ

0.5

)−3/4
Π
−1
Σ

(κ0,ff

1022

)1/10
, (1.188)
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t0 [days] = 36.41α
−4/5

(
rout

R�

)5/4 (Ṁin(t = 0)
1018g/s

)−3/10

m1/4
x × (1.189)

×
(

µ

0.5

)3/4
ΠΣ

(κ0,ff

1022

)−1/10
.

The value κ0,ff [cm2 K7/2/g2] can be taken from (1.97) or (1.96).

Σ0 [g/cm2] = 9.9×102
α
−8/3 m5/6

x

(
t + t0
10d

)−7/3( rout

R�

)13/6( r
rout

)−11/10

f 7/10
F ×

(1.190)

×
(

µ

0.5

)5/2 (κ0,ff

1022

)−1/3
Π

10/3
Σ

,

Tc [K] = 3.1×104
α
−1 m1/2

x

(
t + t0
10d

)−1( rout

R�

)1/2( r
rout

)−9/10

f 3/10
F

(
µ

0.5

)
Π3 ,

(1.191)
z0

r
= 0.05α

−1/2 m−1/4
x

(
t + t0
10d

)−1/2 ( rout

R�

)3/4 ( r
rout

)1/20

f 3/20
F (Π1 Π3)

1/2 .

(1.192)
The dimensionless coefficients ΠΣ , Π1..4 were introduced in Sect. 1.5.2, when we
considered the vertical structure of the α-disc. Their values can be found in Table 1.2
and Fig. 1.8. We recall that the surface density Σo is calculated between the bottom
and the top surface of the disc. The full optical depth (for which (1.112) applies in
the stationary case) is equal to:

τ = κ0,ff ρc T−7/2
c Σ0 = 2.4×102

α
−4/3 m1/6

x

(
t + t0
10d

)−2/3 ( rout

R�

)5/6

× (1.193)

×
(

r
rout

)−1/10

f 1/5
F

(
µ

0.5

)3/2 (κ0,ff

1022

)1/3
(

Π 4
3 Π 2

4

Π
1/2
1 Π2

)1/3

.

Luminosity Dependence in an α-Disc with a Constant Outer Radius

In order to calculate the bolometric luminosity of the disc, we assume a quasi-
stationary accretion rate Ṁ(t) = Ṁ(0, t) (1.175), since the main part of the energy is
released at distances from the centre r� rout. The quasi-stationarity is provided by
the fact that the characteristic time scale for evolution (viscous time scale) at small
radii is much smaller than that at large radii. Figure 1.19 illustrates this behaviour
by the fact that the function f (r) becomes approximately constant close to the disc
centre.

Substituting t0 into (1.177), we obtain for the luminosity L = ηaccr Ṁ(t)c2, where
ηaccr is the efficiency of accretion:
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LT(t) [erg/s] = 8.1×1038
α
−2 m1/2

x

(
t + t0
10d

)−5/2 ( rout

R�

)7/2(
η

0.1

)
× (1.194)

×
(

µ

0.5

)2
κ−1/2

T Π
5/2
Σ

,

if Thomson scattering dominates in the outer parts of the disc, and

Lff(t) [erg/s] = 6.7×1039
α
−8/3 m5/6

x

(
t + t0
10d

)−10/3 ( rout

R�

)25/6(
η

0.1

)
× (1.195)

×
(

µ

0.5

)5/2 (κ0,ff

1022

)−1/3
Π

10/3
Σ

,

if Kramer’s opacity dominates. The quantities t0 differ between expressions (1.194)
and (1.195) and are determined using formulae (1.184) and (1.189), respectively.

Note that the quantities t0(T) and t0(ff) in the two regimes are not independent
of each other. In a physically consistent model with a transition between the opacity
regimes, it is necessary to find an intersection between the two solutions. This may
be done by equating the torques F and the surface densities Σ0 in the two regimes
at radius r = 0.5rout. These two conditions specify the intersection time itself and
the difference between times t0 in the two regimes. The value of t0 in one of the
regimes is a free parameter, and can be chosen so that t = 0 corresponds to a certain
accretion rate.

Figure 1.20 shows the bolometric lightcurves for the parameters α = 0.3, mx =
3 and κ0,ff = 6.45× 1022 cm5 K7/2/g2 and κT = 0.4cm2/g in the two opacity
regimes. Typical values for Π1,2,3,4 are used. The normalised time in the absorption
regime (1.189) t0(ff) ≈ 107 days is obtained from the condition that the accretion
rate is Ṁ = 1018 g/s at t = 0. Equality between F and Σ in the two different regimes
occurs at radius r/rout = 0.5 when

t + t0(ff) = ttr ≈ 48d(mx/3)2/5 (α/0.3)−4/5 (µ/0.5)3/5 (rout/R�)4/5 .

The normalised time in the scattering regime can be uniquely determined: t0(T) ≈
90 days. The intersection of the lightcurves at time t = ttr− t0(ff)≈−59d is marked
with a cross in Fig. 1.20. We can see that there is a smooth transition between
the solutions in the two regimes at this time. There is another intersection of the
lightcurves at t ≈ −3d, which represent a second point where the two functions
FT(ξ , t+t0(T)) = Fff(ξ , t+t0(ff)) take on equal values. This intersection exists only
in a mathematical sense. The physical conditions in the disc at this moment are such
that absorption dominates the opacity, and the values of the physical parameters in
the disc, calculated according to (1.183)–(1.193), differ.

Let us not forget that we are working within the framework of the model
for a geometrically thin disc with sub-critical accretion. Therefore, the solution
considered is applicable only for luminosity below the Eddington value LEdd ≈
1.4×1038 mx erg/s. Figure 1.20 shows that the evolution of the disc with L < LEdd
proceeds almost entirely in the absorption-dominated opacity regime.
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Fig. 1.20 Bolometric disc luminosity LT and Lff for the parameters mx = 3, α = 0.3, µ = 0.5,
rout = R�. The dashed line shows the scattering dominated opacity regime and the solid line shows
the absorption dominated regime. The transition from the solution in the scattering regime to the
solution in the absorption regime is marked with a cross. The second intersection of the curves is
marked with a bar.

Fig. 1.21 Luminosity of the disc observed from a distance of 1 kpc, for parameters mx = 3, α =
0.3, µ = 0.5, and rout = R�. The bolometric lightcurve (top) is shown together with the lightcurves
in two X-ray bands, 1–20 keV and 3–6 keV.

When the temperature in the equatorial disc plane Tc drops at large radii down to
a value of ∼ 3×104 K, the opacity increases strongly due to the onset of recombi-
nation in the plasma. The coefficient D significantly changes, and the given solution
is no longer applicable. As the mechanism of heat transfer to the surface changes,
the vertical structure of the disc readjusts on the characteristic thermal time scale,
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Fig. 1.22 Modelling of outbursts in X-ray novae A 06020-00 (1975) and GU Mus 1124-68 (1991)
from Suleimanov et al (2008). The parameters of the models are shown in the figure. In addition
to the notations introduced in the text, we have the following parameters: the dimensionless Kerr
parameter a of the black hole, the factor η of conversion of X-rays into optical emission, and the
height of the scattering atmosphere z(r).

and conditions arise for the onset of convection. This happens at t ≈ 80d for the disc
parameters mx = 3 and α = 0.3 (Fig. 1.20).

Figure 1.21 shows the bolometric lightcurve together with the lightcurves in two
X-ray bands from a disc perpendicular to the line of sight at a distance of 1 kpc.
The vertical line shows the moment in time after which the bolometric luminosity
of the disc becomes lower than LEdd. The shape of the lightcurves describes well the
exponential decay of the luminosity observed in outbursts of X-ray novae.

Suleimanov et al (2008) modelled two outbursts of X-ray novae and compared
them with observed lightcurves in the X-ray and optical bands. The model included
the illumination of the outer parts of the disc by the X-ray flux and its conversion
to optical emission. The model also included the effect of distortion of the photon
trajectories in the Kerr metric around the black hole (see Fig. 1.23) as well as the
presence of an extended disc atmosphere, capable of scattering the X-ray emission
at altitudes higher than the hydrodynamic thickness of the disc. As a result, limits
on the parameters of discs and binary systems were found. If we know dynamical
parameters of binaries from observations (their periods and companion masses), we
may find an interval of possible values for the turbulence parameter α . Figure 1.22
shows an example of the modelled lighturves together with the corresponding pa-
rameters of the model.
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Fig. 1.23 Angular distribution Ψ(θ) of the intensity from a standard accretion disc around a Kerr
black hole, integrated over 1.5–6 keV (from Suleimanov et al (2008)). The angle θ is the angle
between the normal to the disc plane and the line of sight. Tmax is the maximum effective temper-
ature of the disc. The values of the dimensionless Kerr parameter a are indicated for the curves.
The dotted line shows the angular distribution for a thin disc in the Newtonian approximation:
Ψ(θ) = 2 cos(θ). The observed flux can be found as F = LΨ(θ)/(4πd)2, where L is the bolo-
metric luminosity, d is the distance to the disc. The function Ψ(θ) is calculated using the code of
Speith et al (1995). The effects of limb-darkening are ignored here but are illustrated in Figure 9
in Suleimanov et al (2007).

1.7 Numerical Modelling of Non-stationary Disc Accretion

A numerical scheme, which is described in this section, is implemented in the
FREDDI6 code. FREDDI is intended for modelling the lightcurves of X-ray novae

6 http://xray.sai.msu.ru/˜malanchev/freddi/
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with fast rise and exponential decay (Lipunova and Malanchev 2017). With the help
of FREDDI it is possible to describe the time-dependence of the accretion rate onto
the black hole Ṁ(t) and to obtain lightcurves in various energy bands.

1.7.1 Solution to the Equations of Viscous Evolution

Let us examine the equation of viscous evolution of an accretion disc (1.123)
obtained earlier in this chapter:

∂Σ0(hK, t)
∂ t

=
1

4π

(GM)2

h3
K

∂

∂hK

([
∂h
∂hK

]−1
∂F(hK, t)

∂hK

)
, (1.196)

where t is the time, h(r) = ω(r)r is the specific angular momentum in the disc,
hK =

√
GMr is the Keplerian angular momentum, and Σ0(h, t) is the surface density

of the disc and F(h, t) the viscous torque, acting on a layer of the disc.
We will consider the case of Keplerian rotation, when hK = h. Rotation in a rel-

ativistic potential will complicate the computations and place restrictions on the
choice of nodes for the radial coordinate h. For a Schwarzschild potential, in the
innermost regions of the disc, each following node must be located not further than
twice as far from the centre as the previous one.

For a full set-up of the problem of viscous disc evolution, we need to give initial
and boundary conditions. In the case of accretion onto a black hole, the boundary
condition at the inner disc radius hin, corresponding to the innermost stable orbit
(3.22), is given as the viscous torque F being equal to zero. If the accretion disc is
limited by the magnetosphere of a neutron star or a young star, the inner boundary
condition on the value of F is set by the conditions at the magnetospheric boundary.
Thus, for a number of cases the inner boundary condition of the problem is a first
(Dirichlet) type condition.

The type of outer boundary condition also depends on the astrophysical situation.
In a binary system we may assume that angular momentum is removed only by tidal
forces from the outer edge of the disc, corresponding to hout. Then, together with the
assumption that matter flows into the accretion disc only through its outer boundary,
we obtain a boundary condition of the second (Neumann) type: ∂F/∂h= Ṁout(t). In
the more general case, if we take into account the radial distribution of tidal forces,
removal of angular momentum from the disc surface through disc winds, capture
of matter at a wide range of radii in the disc, etc., it becomes necessary to include
additional terms in the original equation (1.196). If we consider the evolution of
an infinite disc, for example a protoplanetary disc or a disc around a supermassive
black hole in an active galactic nucleus, then from a mathematical point of view,
a boundary condition at infinity is equivalent to the value and the derivative of the
torque being equal to zero. However, from the point of view of numerical modelling,
we cannot operate with infinite quantities of the specific angular momentum h. We
may solve this problem in two ways. Firstly, we may limit the region of study to
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some value hout, to which, during the studied time-interval, no significant amount of
matter will be able to reach, and there establish a boundary condition of the torque F
being equal to zero. Secondly, we may replace the radial coordinate h with another
coordinate, so that the infinite value h equals a finite value of the new coordinate,
for example: 1/h, 1− e−h or arcctgh. A change of the radial coordinate, however,
complicates the original equation, and, as a consequence, place restrictions on the
steps between the nodes for the new radial coordinate.

The equation (1.196) is written with respect to two unknown but related func-
tions: Σ0(h, t) and F(h, t). One of these quantities can be obtained for any value of
the specific angular momentum h, and for any moment in time t, if the other quan-
tity is known. Earlier in this chapter we studied the cases of linear and power-law
relationships between Σ0(h) and F(h), for which analytical solutions to the equa-
tion (1.196) are possible. However, in the general case, the problem (1.196) has to
be solved numerically. The problem is more convenient to solve with respect to the
function F(h, t), since the boundary conditions are set relative to this function. As
we show below, using F(h, t) as the unknown function is more convenient if we find
the relationship between Σ0 and Fnumerically from the equations of vertical struc-
ture. Thus we will express the surface density as a function of the radial coordinate
and the torque: Σ0(F(h, t), h).

Note that the problem at hand is a specific case of the non-linear diffusion equa-
tion. Most often in physics, diffusion equations in which the non-linear diffusion
coefficient is contained in the spatial derivative, are studied. As mentioned above,
however, in our case it is more convenient to consider the problem with regard to
the function F(h, t). Then, the non-linear function Σ0(F(h, t), h) stands in the left
part of equation (1.196). Below we will present a method of solving the equation,
in which the non-linearity is included in the time-derivative. This method has a lot
in common with the method studied in detail in the classical books on numerical
methods, e.g., Press et al (2002), used in the solution to diffusion equations with the
non-linearity in the right part of the equation.

Let us consider the problem of evolution of an accretion disc in a binary system
in the Newtonian potential, assuming that the removal of angular momentum is due
to tidal forces from the outer edge of the disc only:

∂Σ0(F(h, t), h)
∂ t

=
1

4π

(GM)2

h3
∂ 2F(h, t)

∂h2 ,

F(hin, t) = Fin(t),

∂F
∂h

∣∣∣∣
out

= Ṁout(t),

F(h,0) = F0(h),

h ∈ [hin,hout],

t ∈ [0, tfin],

(1.197)

where F0(h) is the initial condition satisfying the boundary conditions and tfin is the
time interval for which the calculation is performed.
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To construct a finite difference scheme we introduce an arbitrary collection of
nodes hn:

h1 < h2 < · · ·< hn < · · ·< hN−1 < hN ,

∆hn ≡ hn−hn−1,

n = 1 . . .N,

(1.198)

where h1 and hN correspond to the values of the specific Keplerian angular momen-
tum at the inner and outer radius, respectively. We will consider a solution to the
equation at the time-interval between t0, with already known values of the desired
function, and t0 +∆ t, for which we need to determine these values.

We substitute the two functions with their corresponding grid functions and in-
troduce the following designations:

F(hn, t0) ⇒ Fn, F(hn, t0 +∆ t) ⇒ F̃n,
Σ0(F(hn, t0) ,hn)⇒ Σn, Σ0(F(hn, t0 +∆ t) ,hn)⇒ Σ̃n,
Fin(t0) ⇒ Fin, Fin(t0 +∆ t) ⇒ F̃in,
Ṁout(t) ⇒ F ′out, Ṁout(t +∆ t) ⇒ F̃ ′out.

(1.199)

Let us start constructing the finite difference scheme. To begin with, we write
down the difference equations for the boundary conditions. The inner boundary con-
dition of the first kind is written in exact form as:

F1 = Fin. (1.200)

To write down the outer boundary condition of the second kind, we expand F̃N−1
in Taylor series around the point hN :

F̃N−1 = F̃N−∆hN
∂F
∂h

∣∣∣∣
hN

+
∆h2

N
2

∂ 2F
∂h2

∣∣∣∣
hN

+o(∆h2
N). (1.201)

Note that in all the expressions considered here and below for the derivatives
with respect to h, we use the value of the torque at time t0 +∆ t. Thus constructed
numerical scheme is called implicit. It is numerically stable. As opposed to an ex-
plicit scheme, in which the derivatives with respect to h would be written using the
known value Fn at time t0, an implicit scheme guarantees that the errors introduced
in this step will not grow in the next steps.

Without going into details, we note that, in addition to the explicit and implicit
methods, there is also a mixed (Crank–Nicolson) method in which the values for
the function at t0 and t0 +∆ t are both used to calculate the derivative with respect
to the spatial coordinate. In some cases, the Crank–Nicolson method gives a higher
accuracy of the solution. The node stencils used in the various methods are shown
in Fig. 1.24.

Discarding the last term in (1.201), we obtain a simple expression for the numer-
ical value of the first derivative of F with respect to h, with accuracy up to the first
order of the expansion interval ∆hN :
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Fig. 1.24 Node stencils that are used for the n-th equation in the system (1.209) in different
schemes. We use the implicit method stencil.

∂F
∂h

∣∣∣∣
hN

=
F̃N− F̃N−1

∆h
+o(∆h). (1.202)

If we, however, in (1.201), substitute the value of the second derivative of F with
respect to h, expressed from the original equation (1.197), we may increase the
accuracy to the second order of ∆hN :

∂F
∂h

∣∣∣∣
hN

=
F̃N− F̃N−1

∆h
+∆h2

N
2πh3

N
(GM)2

∂Σ0(hN)

∂ t
+o(∆h2

N), (1.203)

where the expression for the derivative Σ0 with respect to t by analogy with (1.202)
takes the form:

∂Σ0(hN)

∂ t
=

Σ̃N−ΣN

∆ t
+o(∆ t). (1.204)

In this way we obtain a final expression for the outer boundary condition:

F̃N− F̃N−1

∆h
+

∆h2
N

∆ t
2πh3

N
(GM)2 (Σ̃N−ΣN)+o(∆h2

N)+o(∆ t) = F̃ ′out. (1.205)

Now that we have equations for the values of the function at both ends of the
interval h, we obtain the difference form of the differential equation itself from
(1.197). Let us write down the Taylor expansion for F̃n−1 and F̃n+1 around the point
hn:

F̃n−1 = F̃n−∆hn
∂F
∂h

∣∣∣∣
hn

+
∆h2

n

2
∂ 2F
∂h2

∣∣∣∣
hn

+o(∆h2
n),

F̃n+1 = F̃n +∆hn+1
∂F
∂h

∣∣∣∣
hn

+
∆h2

n+1

2
∂ 2F
∂h2

∣∣∣∣
hn

+o(∆h2
n+1),

(1.206)

where n = 2 . . . N−1.
For convenience we introduce the notation ∆h = max(hn), where n = 2 . . .N.

Then, we may change o(∆hn) to o(∆h) everywhere.
The second derivative of F with respect to h may be expressed from (1.206):
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∂ 2F
∂h2

∣∣∣∣
hn

= 2
F̃n−1

∆hn+1
∆hn+∆hn+1

− F̃n + F̃n+1
∆hn

∆hn+∆hn+1

∆hn∆hn+1
+o(∆h2). (1.207)

Note that when using a homogeneous grid with respect to h, that is for ∆hn =
∆hn+1 = ∆h, the last expression takes a simpler form:

∂ 2F
∂h2

∣∣∣∣
hn

=
F̃n−1−2F̃n + F̃n+1

∆h2 . (1.208)

Substituting the values of the derivatives (1.204) and (1.207) into the differential
equation from (1.197) and replacing the boundary conditions in (1.197) by their
difference analogues (1.200) and (1.205), we obtain a finite difference scheme for
the problem:

4πh3
N

(GM)2
Σ̃n−Σn

∆ t
= 2

F̃n−1
∆hn+1

∆hn+∆hn+1
− F̃n + F̃n+1

∆hn
∆hn+∆hn+1

∆hn∆hn+1
,

F̃1 = F̃in,

F̃N− F̃N−1

∆h
+

∆h2
N

∆ t
2πh3

N
(GM)2 (Σ̃N−ΣN) = F̃ ′out,

n = 2 . . .N−1.

(1.209)

Note that the level of accuracy in the obtained system is o(∆h2)+o(∆ t).
As a result, we have reduced the solution of the differential equations with bound-

ary conditions (1.197) to a subsequent solution of the system of N algebraic equa-
tions (1.209) at each time-step between t = 0 and t = tfin. This system is not linear,
since Σn and Fn are related by the non-linear expression Σn = Σ0(Fn,hn). One way
to solve this system is to use the iterative root-finding algorithm for the value Σ̃n.
For this, some approximation to the value Σ̃

(1)
n must first be chosen (the simplest

variant is the value at the present time step Σn), and the system of linear algebraic
equations is solved to find the intermediate value of Σ̃

(2)
n = Σ0(F̃

(1)
n ,hn) and then the

system of linear algebraic equations is solved again. This simple iterative algorithm
can be improved at the expense of extra memory usage; see Anderson (1965) for
details.

One may think of a number of criteria to stop the integration. We will use one of
them – the condition of small changes in the value for Σ̃

(s)
n between two sequential

iterations. We formalise this criterion:

max
n=2...N

∣∣∣∣∣ Σ̃ (s+1)
n + Σ̃

(s)
n

Σ̃
(s+1)
n

∣∣∣∣∣< ε, (1.210)

where the top index in brackets refers to the number of performed iterations and ε

is the dimensionless accuracy in the search for the value of Σ̃n.
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Note that in each iteration, the solution to the system of linear algebraic equations
may be found by the tridiagonal matrix algorithm. The details of this algorithm can
be found in textbooks on numerical methods, for example Press et al (2002).

The described scheme (1.209) is implemented in the FREDDI7 code. FREDDI is
intended for modelling the lightcurves of X-ray novae with fast rise and exponential
decay (Lipunova and Malanchev 2017). As initial conditions, we may choose either
a quasi-stationary distribution (see Sect. 1.6.7), describing the radial structure of the
disc after the peak in luminosity of the source, or the distribution corresponding to
a dense torus far away from the central black hole.

1.7.2 Solving the Equations of Vertical Structure

In Sect. 1.5.2 we derived the equations for the vertical structure (1.93):

1
ρ

dP
dz

= −ω
2
K z,

dΣ

dz
= ρ,

dQ
dz

=
3
2

ωK wrϕ ,

c
3κRρ

d(aT 4)

dz
= −Q.

To solve these equations, we have to choose suitable boundary conditions. If we
consider the surface density at a given radius as known, we have only three boundary
conditions: Σ(z = 0) = 0, Σ(z = z0) = Σ0/2, and Q(z = z0) = 0. On the other hand,
if we consider the torque at a given radius as known, we may find the necessary
number of boundary conditions to solve the system (1.211).

By analogy with the arguments in Sect. 1.5.2, we obtain the boundary condition
for the pressure at the photosphere:

P(z = z0) =
2
3

ω2
Kz0

κR
. (1.211)

If we assume that energy is released only in layers below the photosphere, the
flux at the photosphere is determined by equation (1.73):

Q(z = z0) =
3

8π

FωK

r2 . (1.212)

Due to symmetry, the flux is equal to zero in the plane of the disc:

Q(z = 0) = 0. (1.213)

7 http://xray.sai.msu.ru/˜malanchev/freddi/
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We consider the emitted spectrum to be that of a blackbody, so we may take the
temperature in the photosphere to be equal to the effective temperature:

T (z = z0) =

(
Q(z = z0)

σSB

)1/4

. (1.214)

The boundary condition Σ = 0 may be set at the surface of the disc as well as
in its symmetric plane. It turns out that in the symmetry plane there are only two
boundary conditions, on the flux Q (1.186) and on the surface density. However,
if we set Σ equal to zero at the disc surface and integrate the system towards the
central plane, we can find the boundary values of all four unknown functions: the
pressure P (1.211), the surface density Σ , the flux Q (1.213), and the temperature
T (1.214). Thus, in what follows, we shall consider integration along the direction
from the disc surface towards its symmetry plane.

While all four boundary conditions at the photosphere are known, we still do not
know the disc half-thickness z0. For convenience in integrating the system (1.211)
from the photosphere to the symmetry plane, we rewrite it with aspect to the alter-
native vertical parameter ẑ≡ z0− z:

1
ρ

dP
dẑ

= ω
2
K (z0− ẑ), (1.215)

dΣ

dẑ
= ρ, (1.216)

dQ
dẑ

= −3
2

ωK wrϕ , (1.217)

c
3κRρ

d(aT 4)

dẑ
= Q, (1.218)

P(ẑ = 0) =
2
3

ω2
Kz0

κR
, (1.219)

Σ̂(ẑ = 0) = 0, (1.220)

Q(ẑ = 0) =
3

8π

FωK

r2 , (1.221)

Q(ẑ = z0) = 0, (1.222)

T (ẑ = 0) =
(

Q(ẑ = 0)
σSB

)1/4

, (1.223)

where Σ̂(ẑ) = Σ0/2−Σ(ẑ) is calculated in the direction from the disc surface.
This system consists of four equations, five boundary conditions and one un-

known — z0. We need to choose a value of z0 such that when integrating the system
(1.223) from ẑ = 0 to ẑ = z0, the boundary condition Q(ẑ = z0) = 0 is fulfilled. As
an initial approximation, we can use values obtained analytically (see Sect. 1.5.3),
and then search for z0 using any method of root-finding.
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Irradiation of the Accretion Disc

In X-ray binaries the outer parts of the disc with photospheric temperature of the
order of 104 K may be irradiated by photons from the inner parts of the disc, direct
or scattered in the corona, with temperatures of the order of 107 K. The surface
of a neutron star may serve as an additional source of hard photons. The surface
of protoplanetary discs, with temperatures of the order of 102 K, is irradiated by ultra
violet radiation from a newly formed star.

Let us consider the case with irradiation by hard radiation incident on the disc
surface at an angle arccosζ . If the disc is illuminated by a point source located in
its centre, and if the disc itself can be considered as thin, we may use the relation

ζ =
dz0

dr
− z0

r
. (1.224)

Then the illuminating flux incident on the disc surface at radius r equals ζ Lx/(4πr2).
If the source of the hard radiation is the disc itself, then the radiation pattern is not
isotropic. Assuming that the central source is point-like, the flux may be written as
ζ Lx/(4πr2)×Ψ(θ). The function Ψ(θ) is shown in Fig 1.23, and θ is the angle
measured from the vertical axis.

A detailed calculation of the effect of irradiation on the vertical structure of the
disc is rather complicated, and was presented, e.g., in the work by Mescheryakov
et al (2011b). In a first approximation, we may limit ourselves to changing the
boundary condition on the flux originating from the surface of the disc:

Q(ẑ = 0) =
3

8π

FωK

r2 +ζ
Lx

4πr2 Ψ(θ).

In order to explain the observed optical lightcurves from X-ray novae, the effec-
tive thickness of the disc for radiation interception in formula (1.224) needs to be
twice as large as z0 (Suleimanov et al 2008). It is assumed in their calculations that
the lower layers of the disc atmosphere above the photosphere are opaque to soft X-
rays from the central parts of the disc. Furthermore, it was shown by Mescheryakov
et al (2011a), from modelling lightcurves of the illuminated stellar companion in the
burster GS 1826-238, a low-mass X-ray binary with a neutron star, that the effective
thickness of the disc for interception of X-rays is approximately twice as large as z0.

1.7.3 Example Numerical Modelling of a FRED Lightcurve of an
X-ray Nova

Let us now turn to the numerical modelling of an outburst of X-ray nova A 0620–
00. The following parameters of the binary system are used: mass of the compact
object (a black hole) 6.6M�, mass of the optical companion 0.5M�, orbital period
0.323 days, inclination of the orbital plane to the line of sight 53.5◦, and distance to
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the system 1.1 kpc. These parameters are observational results from analyses of the
lightcurves of the system in quiescence (Cantrell et al 2010; Gou et al 2010).

In Figs. 1.25 and 1.26, lightcurves of the source after the peak of the outburst in
1975 in soft X-rays and in the B-band are shown. The lightcurve of this outburst is an
example of a FRED-type lightcurve8, in which a fast rise in luminosity is followed
by a quasi-exponential decay.

An interesting feature in most FRED-type lightcurves is the existence of a sec-
ondary peak. The nature of this secondary peak is currently not understood.

To reproduce the secondary peak, it has been suggested that a significant amount
of matter was supplied to the disc by the donor star on the 43rd day after the peak.
Within the framework of this model, this matter instantaneously increases the sur-
face density of the disc in its outer parts, which leads to a jump in optical luminosity
(Fig. 1.25).
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Fig. 1.25 Lightcurve of the X-ray nova A 0620–00 in the photometric B-band. Data from Duer-
beck and Walter (1976); Lloyd et al (1977) are shown with filled circles. The solid line shows our
modelling of the lightcurve.

Due to the increase in surface density in the outer regions of the disc, a gradual
increase of the accretion rate takes place in the central regions of the disc. This leads
to an increase in temperature and thereby X-ray luminosity of the disc. In this way,
a local maximum shows up in the lightcurve (Fig. 1.26).

The maximal accretion rate Ṁmax ≈ 0.2ṀEdd, and the α-parameter, ≈ 0.3, are
determined from the part of the X-ray lightcurve before the secondary peak. From
the part of the optical lightcurve before the secondary peak, we estimate the ef-
fective thickness of the disc for X-ray radiation interception, which turns out to be
≈ 2z0 (Malanchev and Shakura 2015).

8 Fast-rise exponential-decay
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Fig. 1.26 Lightcurve of the X-ray nova A 0620–00 at 3—6 keV. The vertical bars show data with
errors from Ariel 5 Kaluzienski et al (1977), and the solid line shows the model lightcurve.

To model the lightcurve of an X-ray nova, one has to keep in mind that in general
the disc is not physically uniform, but has a hot inner part with ionized matter (zones
A, B and C; see Sect. 1.5) and a colder outer part with lower accretion rate. When the
disc cools down to temperatures at which hydrogen recombines, the α–parameter
decreases by approximately an order of magnitude (Smak 1984). In a first approxi-
mation, we may assume that accretion in the cold outer parts ceases. The boundary
between the hot and cold parts gradually moves towards the centre following the
hydrogen recombination front.

The open code FREDDI is provided by the authors to model FRED-type light-
curves of X-ray novae. This code calculates the disc evolution for a fully ionized
disc, as well as for a disc with a cold front propagating inwards. Using this code, the
outburst of the X-ray nova 4U 1543-47 in 2002, hosting a black hole, was modelled
by Lipunova and Malanchev (2017).

Using FREDDI, estimates of α can be derived, which are more accurate than
(1.149):

α ≈ 0.21
(

Rhot

R�

)25/16 ( texp

30d

)−5/4
(

Ṁmax

1018 g/s

)−3/8

m5/16
x , (1.225)

for the Kramers opacity, and

α ≈ 0.20
(

Rhot

R�

)12/7 ( texp

30d

)−9/7
(

Ṁmax

1018 g/s

)−3/7

m2/7
x (1.226)

for the OPAL approximation (Lipunova and Malanchev 2017). Here, Rhot is the
radius of the hot zone of the disc at the peak of an outburst. Power indexes in the
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above expressions are obtained when substituting the thickness of the disk in (1.149)
by its analytic expression from (1.104) or (1.110). The numerical factors in the
expressions for α are found by fitting FREDDI results; their accuracy is around 5%.
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Chapter 2
The Properties of Spherical Geodesics in the
Kerr Metric

Nikolay Shakura

Abstract This small methodological chapter is devoted to considering the motion
of particles along spherical geodesical trajectories around rotating black holes. The
motion along these trajectories can occur in accretion discs near equatorial planes
of rotating black holes. The study of this motion is necessary for understanding the
inner structure of the disc. Moreover, this chapter uses a special approach to find out
how the values that are measured in a local Lorentz frame of observers falling freely
in an axially symmetric gravitational field are related to each other. This approach
allows us to better understand the basic principles of measuring physical values in
general relativity. These basic principles, which are systematically presented in the
next chapter, are required for a more comprehensive understanding the structure of
relativistic accretion discs.

In the Kerr metric, a squared interval may be expressed in the Boyer–Lindquist
coordinates as follows (see, for example, Misner et al (1977)):

ds2 =−
(

1− 2r
ρ2

)
dt2− 4ar sin2 θ

ρ2 dtdφ + ρ2

∆
dr2 +ρ2dθ 2 +(

r2 +a2 + 2a2r sin2 θ

ρ2

)
sin2

θdφ 2 , (2.1)

where

ρ
2 = r2 +a2 cos2

θ , ∆ = r2−2r+a2 , −1≤ a≤ 1. (2.2)

In these coordinates, GM/c2 = 1 and c = 1, that is, the distances are measured in
units of half a Schwarzschild radius of the black hole (BH), and the unit time is
the time it takes for light signals to travel along a given unit distance. The Kerr
metric describes the structure of spacetime around a rotating BH with mass M and
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Sternberg Astronomical Institute, Lomonosov Moscow State University, Universitetsky pr. 13,
Moscow, 119234, Russia; Kazan Federal University, 18 Kremlevskaya, Kazan, 420008, Russia,
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specific dimensionless angular momentum a= Jc/(GM2). There exist four integrals
of motion in this metric: a) the energy of a test particle E = −pt ; b) the projection
of angular momentum of the particle onto the BH rotation axis Lz; c) the rest mass
of the particle m; and d) the so-called Carter integral of motion

Q = p2
φ + cos2

θ

[
a2(m2−E2)+

L2
z

sin2
θ

]
, (2.3)

which is related to the square of the total angular momentum of the particle.
The motion of test particles in the Kerr metric reduces to solving the following

system of ordinary differential equations of the first order (Carter 1968):

ρ
2 dr

dλ
=±

√
R(r) (2.4)

ρ
2 dθ

dλ
=±

√
Θ(θ) (2.5)

ρ
2 dφ

dλ
=−

(
aE− Lz

sin2
θ

)
+

aP
∆

(2.6)

ρ
2 dt

dλ
=−a

(
aE sin2

θ −Lz
)
+

(r2 +a2)P
∆

, (2.7)

where differentiation is performed with respect to the affine parameter λ related to
the proper time of the particle τ = mλ , and

R(r) = P2−∆
[
m2r2 +(Lz−aE)2 +Q

]
, (2.8)

Θ(θ) = Q− cos2
θ

[
a2(m2−E2)+

L2
z

sin2
θ

]
, (2.9)

P = E(r2 +a2)−Lza . (2.10)

The general solution to the system of equations (2.4)– (2.7)) may be expressed
through elliptical integrals (Bardeen et al 1972). In spite of the apparent complexity
of the right-hand parts of these equations, the motion of particles in the Kerr metric
turns out fairly simple from a qualitative point of view. Indeed, let a particle of mass
m move with a constant velocity along a straight line in empty space with respect to
a spherical system of coordinates. Equating M = a = 0 in the system (2.4)– (2.10),
we obtain

dr
dλ

=±
√

E2−m2− L2
z +Q
r2 , (2.11)

r2 dθ

dλ
=±

√
Q+L2

z −
L2

z

sin2
θ
, (2.12)

r2 dφ

dλ
=

Lz

sin2
θ
, (2.13)
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dt
dλ

= E . (2.14)

It can be seen that the “effective repulsive potential” L2
z+Q
r2 arises in this system of

coordinates, where L2
z +Q has the meaning of the total angular momentum relative

to the origin of the coordinate system. The rate of change of the radial component
dr/dλ becomes zero at the minimal travelling path rmin =

√
(L2

z +Q)/(E2−m2). In
the general case, the equatorial plane of the coordinate system is oriented arbitrarily
with respect to the plane passing through the velocity vector and the origin. The
joint solution to Eqs. (2.12)– (2.13) makes it possible to find the trajectory trace in
the angular coordinates θ ,φ . Note that if these planes are oriented orthogonally, the
angular velocity of the particle dθ/dλ changes the sign at the moment the particle
passes through the poles θp = 0,π of the coordinate system. Naturally, the actual
velocity of the particle does not change at all. Equation (2.14) illustrates the well-
known relativistic effect of time dilation in a moving coordinate system.

Further, let us place a mass with a spherically symmetric gravitational field (for
example, a Schwarzschild BH) in the origin of the coordinate system. A comparison
of (2.5) and (2.6) to (2.12) and (2.13) shows that if M 6= 0 and a = 0, the right-hand
parts of the equations for the angular variables θ and φ remain the same as for the
free particle, implying that the general solution θ(φ) remains the same for a spher-
ically symmetric mass. This, in particular, means that the particle always remains
in the same plane when moving in a spherically symmetric gravitational field. The
presence of the gravitating mass in the origin effectively changes the motion along
the r coordinate (giving rise to gravitationally bound orbits with energy E < m). In
addition, the time dilation effect becomes more appreciable in a gravitational field.

When examining a Kerr black hole (a 6= 0), it is necessary to consider a qualita-
tively new effect related to the particle’s being dragged additionally along the φ co-
ordinate (the Lense-Thirring effect) due to the vortical component of the stationary
gravitational field of the rotating BH. The part of the field due to gravitational poten-
tial 1, although remaining axially symmetric, loses its spherical symmetry, providing
the rotating BH with an effective quadrupole moment proportional to Ma2, which
complicates quantitatively the form of the right-hand parts of Eqs. (2.4)– (2.7).

In many astrophysical applications (especially, accretion discs around rotating
BHs; see, for example, Bardeen and Petterson (1975) and the following chapters),
the so-called spherical orbits with r = const are of special interest.

In order for particles to move along spherical orbits, the following conditions
should be fulfilled (Wilkins 1972):

R(r) = E2(r4 +2a2r+a2r2)−4ELzar−L2
z (r

2−2r)−∆(m2r2 +Q) = 0 , (2.15)

∂R
∂ r

= E2(2r3 +a2 +a2r)−2ELza− (r−1)(L2
z +Q+m2r2)−∆m2r = 0 . (2.16)

1 the part that is responsible for the gravitational acceleration of a reference observer; see Thorne
et al (1986) for details
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From these equations, the functions E(Q,r) and Lz(Q,r) may be expressed in an
explicit form. However, according to Bardeen et al (1972), who was the first to
note this circumstance, it is more natural and convenient to perform calculations in
the reference frame of a fiducial observer (FIDO), who does not possess any angu-
lar momentum with respect to the BH, although rotating with the Lense-Thirring
frequency relative to an infinitely remote observer. Any test particle with zero pro-
jection of angular momentum onto the BH rotation axis (Lz = 0), will have a zero
velocity component along the φ axis, when travelling past such a local inertial ob-
server (see further below).

In the general case, the squared interval in the stationary axially symmetric metric
is

ds2 =−e2ν dt2 + e2ψ(dφ −ωdt)2 + e2λ dr2 + e2µ dθ
2 . (2.17)

Since the non-diagonal metric coefficient gtφ = −ωgφφ is not equal to zero, it
turns out that a FIDO moves with the Lense-Thirring angular velocity:

ω =− gtφ

gφφ

. (2.18)

The contravariant components of the metric tensor in Eq. (2.17) are:

gtt =−e−2ν , gtφ =−ωe−2ν , gφφ = e−2ψ −ω2e−2ν ,

grr = e−2λ , gθθ = e−2µ . (2.19)

It thus follows that the general expression for the squared four-momentum p of a
particle with mass m

pα pα = gαβ pα pβ =−m2 (2.20)

can be written in the form

−m2 =−e−2ν p2
t −2ωe−2ν pt pφ +(e−2ψ −ω2e−2ν)p2

φ
+ e−2λ p2

r + e−2µ p2
θ
=

−e−2ν(pt +ω pφ )
2 + e−2ψ p2

φ
+ e−2λ p2

r + e−2µ p2
θ
. (2.21)

In the reference frame of a FIDO, spacetime is locally flat (pseudo-Euclidean) and
can be described by the Minkowski metric gαβ = η(α)(β ) = diag(−1,1,1,1)2. The
general formula for the four-momentum squared (2.20) is expressed using physi-
cal values that can be measured by a FIDO, namely, the particle’s energy p(t) =
m/
√

1−β 2 ≡ mγ and three spatial components of the momentum p(i) = mγβ (i)

with i = r,θ ,φ in the standard Lorentz-invariant manner:

−(p(t))2 +(p(r))2 +(p(θ))2 +(p(φ))2 =−m2 , (2.22)

where the spatial velocity components are related through the expression β 2 =
(β (r))2 +(β (θ))2 +(β (φ))2.

2 More details on reference frames and the tetrad representation may be found in Sect. 3.2.
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In the general case, the energy E =−pt of a particle moving along some path in a
stationary axially symmetric metric (2.17) is conserved with respect to an infinitely
remote observer, and so is the particle’s angular momentum projected onto the sym-
metry axis of the BH, Lz = pφ (Bardeen et al 1972). Equations (2.21) and (2.22)
may be used to find the relationship between the energy and the spatial components
of the particle’s momentum (locally measured by a FIDO) through these constants
and metric coefficients:

p(t) = mγ = e−ν(E−ωLz), p(φ) = mγβ (φ) = e−ψ Lz,

p(r) = mγβ (r) = e−λ pr, p(θ) = mγβ (θ) = e−µ pθ (2.23)

(note that these quantities may also be directly calculated through the FIDO tetrad
components in the given metric; see the next chapter for details).

Let us now examine the particular case of spherical orbits, for which p(r) = 0.
In this case, expressions for locally measurable velocity components can be derived
from Eqs. (2.22) and (2.23):

β
(φ) =

L̃z

Ẽ−ωL̃z
eν−ψ , (2.24)

β
(θ) =

[
1− e2ν(1+ e−2ψ L̃2

z

(Ẽ−ωL̃z)2

]1/2

, (2.25)

where Ẽ = E/m and L̃z = Lz/m.
For further consideration, it is convenient to introduce the angular velocity of the

particle with respect to a remote observer:

Ω(r,θ)≡ dφ

dt
=

dφ/dτ

dt/dτ
=

pφ

pt =
gφφ pφ +gφ t pt

gtt pt +gφ t pφ

= ω +
L̃z

Ẽ−ωL̃z
e2ν−2ψ . (2.26)

When substituting (2.26) into (2.24), we obtain

β
(φ) = (Ω −ω)eψ−ν . (2.27)

As a matter of fact, we have derived the well-known property that the particle, which
rotates with an angular velocity Ω = ω due to the Lense-Thirring frame-dragging
effect with respect to a remote observer, does not rotate in the reference frame of a
local FIDO: β (φ) = 0.

The motion of particles along spherical orbits crossing the BH equatorial plane
is confined in latitude (except for the degenerate case of Lz = 0), implying that there
exist angle coordinate values θ∗ and π−θ∗ (the turning points) above and below the
equatorial plane, respectively, where β (θ)(θ∗) = 0. This allows us to find the energy
for the spherical orbits using Eqs. (2.24), (2.25) and (2.27):

Ẽ =
eν [1+ω∗(Ω ∗−ω∗)e2(ψ−ν)]

[1− (Ω ∗−ω∗)2e2(ψ−ν)]1/2 (2.28)



108 Nikolay Shakura

and the angular momentum projected onto the BH rotation axis:

L̃z = γβ
(φ)eψ =

(Ω ∗−ω∗)e2ψ−ν)

[1− (Ω ∗−ω∗)2e2(ψ−ν)]1/2 , (2.29)

where the angular velocities Ω ∗ and ω∗, along with the corresponding metric coef-
ficients, are to be calculated at the turning points θ∗ or π−θ∗. At these points, the
angular velocity of the particle can be derived from the geodesic equation

d2xµ

dλ 2 +Γ
µ

αβ
pα pβ = 0 . (2.30)

In case of spherical orbits, the first term vanishes for the radial component of
Eq. (2.30). Furthermore, p(θ)(θ∗) = 0 at the turning points, which yields

Γ ∗rttdt2 +2Γ ∗rtφ dtdφ +Γ ∗rφφ
dφ 2

dλ 2 = 0 , (2.31)

where in view of the axial symmetry of the problem, the Christoffel symbols depend
only on partial derivatives of the metric tensor over the r coordinate:

Γ
∗

rtt =−
1
2

(
∂gtt

∂ r

)
θ=θ∗

=−1
2

g∗tt,r; Γ
∗

rtφ =−1
2

g∗tφ ,r, Γ
∗

rφφ =−1
2

g∗φφ ,r . (2.32)

Taking into account the definition of the angular velocity Ω = dφ/dt, we see that
Eq. (2.31) becomes an algebraic equation relative to Ω ; its two roots

Ω
∗
1,2 =

−g∗tφ ,r±
√

g∗2tφ ,r−g∗
φφ ,rg

∗
tt,r

g∗
φφ ,r

(2.33)

correspond to the angular velocities at the turning points in direct spherical orbits
(coincident with the direction of BH rotation) and retrograde spherical orbits, re-
spectively. Using the explicit form of the Kerr metric (2.1), we find

Ω
∗
1,2 =

q∗
sinθ∗(±ρ2∗

√
r+aq∗ sinθ∗)

, (2.34)

where q2
∗ = r2 − a2 cos2 θ∗ and ρ2

∗ = r2 + a2 cos2 θ∗. Substituting (2.34) and the
values of the corresponding metric coefficients from the metric (2.1) into (2.28)
and (2.29) and cancelling out the common multiple ρ2

∗
√

r/(ρ2
∗
√

r± aq∗ sinθ∗) in
the numerators and denominators of (2.28) and (2.29), we finally obtain:

Ẽ =
1− 2r

ρ2∗
± aq∗

ρ2∗

√
1
r sinθ∗[

1− 3r
ρ2∗
± 2aq∗

ρ2∗

√
1
r sinθ∗+ a2

ρ2∗ r
cos2 θ∗

]1/2 , (2.35)
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L̃z =
± q∗

ρ2∗

√
1
r (r

2 +a2)sinθ∗− 2ar
ρ2∗

sin2
θ∗[

1− 3r
ρ2∗
± 2aq∗

ρ2∗

√
1
r sinθ∗+ a2

ρ2∗ r
cos2 θ∗

]1/2 . (2.36)

The direct substitution shows that (2.35) and (2.36) take the familiar form for cir-
cular equatorial orbits with θ∗ = π/2 (Bardeen 1973), whereas for spherical polar
orbits with Lz = 0 and θ∗ = 0, the expression (2.35) coincides with the result pro-
vided in Lightman et al (1975).

In the end, using (2.9) (taking into account that dθ/dλ = 0, we have Θ(θ∗) = 0
at the points θ∗) along with (2.35) and (2.36), we find the Carter integral:

Q̃ = cos2 θ∗r×
1∓ 4aq∗r2

ρ4∗

√
1
r sinθ∗− 4a2r

ρ4∗
cos2 θ∗+

a2(3r2+a2 cos2 θ∗)
ρ4∗

sin2
θ∗[

1− 3r
ρ2∗
± 2aq∗

ρ2∗

√
1
r sinθ∗+ a2

ρ2∗ r
cos2 θ∗

]1/2 . (2.37)

In disc accretion onto BHs, the angle θ∗ determines, at large distances, the ori-
entation of the disc plane relative to the BH equatorial plane. The structure of tilted
relativistic discs around rotating BHs is discussed in the next two chapters in detail.
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Chapter 3
Relativistic Standard Accretion Disc

Viacheslav Zhuravlev

In this chapter we present a model of a standard accretion disc around a rotat-
ing black hole taking general relativity effects into full account. This model was
first described in the paper by Novikov and Thorne (1973) and has since then been
used in many studies to obtain convincing evidence of the existence of black holes,
in both stellar binary systems and active galactic nuclei. It remains topical since a
full account of the general relativistic properties of the motion of matter in the disc,
and the generation of disc emission, allows the position of the inner disc radius and
hence the black hole spin to be inferred from observations. The observational ap-
pearance of relativistic disc was modelled for the first time in Cunningham (1975),
(for a comprehensive review, see Gierlinski et al (2001) and L-x et al (2005), ref-
erences therein and their citations list). In addition, the standard accretion disc is
the basis for more complicated theories of warped (twisted) accretion discs, which
are formed when the accreting matter moves outside the equatorial plane of a rotat-
ing black hole. A theory of warped (twisted) discs was presented in Zhuravlev and
Ivanov (2011) and is discussed in more detail in Chap. 4.

Everywhere below, natural units, G = c = 1, are used. If the mass is measured
in units of the black hole mass, M, the unit of length is half the Schwarzschild
gravitational radius, Rg/2, such that Rg/2 = GM/c2 = 1 and the unit of time is the
light crossing time for a unit length.

In addition, Latin indices i, j,k..., taking values from 0 to 3, are used to denote
components of vectors, with the zero component standing for the time coordinate.
Also, wherever needed the Einstein summation convention is used.
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3.1 Space-time near Rotating Black Holes

3.1.1 The Kerr Metric

The properties of spacetime near a rotating black hole are described by an axially
symmetric and stationary metric of the form

ds2 =
(

1− 2R
ρ2

)
dt2− 4aRsin2 θ

ρ2 dtdφ − ρ2

∆
dR2−ρ2dθ 2−(

R2 +a2 + 2a2Rsin2 θ

ρ2

)
sin2

θdφ 2 , (3.1)

where the signature (1,−1,−1,−1) is chosen and the following notations are used:

ρ
2 = R2 +a2 cos2

θ , ∆ = R2−2R+a2 , −1≤ a≤ 1. (3.2)

The coordinates {t,φ ,R,θ} are called the Boyer-Lindquist coordinates1. Far
away from the gravitating body, the spatial part of these coordinates, in the limit
of a zero black hole spin parameter, a, transforms into the usual spherical coordi-
nates, where φ is the azimuthal angle. For a non-zero a, it transforms to generalized
spherical coordinates in which the surfaces of constant radial distance, R = const,
represent spheroids with the aspect ratio R/(R2 +a2)1/2.

The space-time described by (3.1) is axially symmetric with respect to the line
θ = 0, called the black hole rotation axis. The plane corresponding to θ = π/2, is
called the black hole equatorial plane.

In (3.1) an important quantity appears:

ω =
2aR
Σ 2 , (3.3)

which has the dimension of frequency. This is the angular velocity that any freely
moving observer acquires in the direction of the black hole rotation.

As described in the literature on the structure of rotating black holes (see, e.g.,
Chandrasekhar (1992), paragraph 58), the metric (3.1) has several special hypersur-
faces, including the event horizon and the ergosphere. However, as we show below,
for the astrophysical problem under consideration, of most importance is the dy-
namics of free circular motion of particles in the equatorial plane of the gravitating
body. This motion has additional features in comparison to the corresponding New-
tonian problem. Note that in the next chapter we also discuss weakly elliptical orbits,
slightly inclined to the equatorial plane.

We consider a standard, and hence geometrically thin, accretion disc. In this
chapter we discuss the basic case of a flat disc. By definition, this is a stationary
flow of matter with mirror symmetry with respect to its midplane and axial sym-

1 Unlike in the previous chapter, in this chapter the spherical radial coordinate in the Kerr metric
is denoted by R. The lowercase letter, r, is reserved for the cylindrical coordinates.



3 Relativistic Standard Accretion Disc 113

metry with respect to the line perpendicular to this plane. Clearly, such a model
flow can be described by dynamical equations in an axially symmetric metric only
if the disc symmetry plane coincides with the equatorial plane of the black hole. To
tackle the problem, it is sufficient to know the form of the metric close to the plane
θ = π/2. Changing to cylindrical coordinates using the standard transformation

r = Rsinθ , z = Rcosθ ,

all metric coefficients gik in (3.1) can be expanded in power series of the small
ratio z/r� 1. For geometrically thin discs, corrections to gik due to non-equatorial
motion up to (z/r)2 are sufficient. Indeed, one of the basic equations describing the
disc, namely, the projection of the relativistic analogue of the Euler equation onto
the direction normal to the disc plane, must be odd with respect to the coordinate
reflection z→ −z due to the mirror symmetry of the disc. This means that in its
expansion in (z/r) only odd powers of (z/r) must be present. According to the main
assumption of the smallness of (z/r), only the first term in this expansion should be
kept. This, in turn, corresponds to an expansion in series of gik up to quadratic terms,
since only first derivatives of gik, characterizing the ’strength’ of the gravitational
field, enter the dynamical equations.

Note, however, that hydrodynamic equations also contain a second covariant
derivative of the velocity field (see below), and hence the final expressions can in-
volve second derivatives of gik with respect to z, which may seem to require that we
keep terms of the order of (z/r)3 in gik. But this is not required, since, as follows
from the explicit form of the stress-energy tensor, such terms can appear only when
multiplied by some of the viscous coefficients, which in turn cannot be greater than
of the order of (z/r) being proportional to the characteristic mixing length in the
fluid. The latter is initially assumed to be less than the disc thickness.

As regards the other equations, namely (see below): the two projections of the
relativistic analogue of the Euler equation onto the disc plane, the energy balance
equation and the rest energy conservation law – the same symmetry considerations
imply that they are even under the coordinate reflection z → −z. Therefore, the
leading term is of the zeroth order in (z/r) in the metric expansion.

Using these expansions and expressions for the coordinate differentials

dR =

(
1− 1

2
z2

r2

)
dr+

z
r

dz,

dθ =
z
r

dr
r
−
(

1− z2

r2

)
dz
r
,

we find the metric in the following form (see also Riffert and Herold (1995)):
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ds2 =

[
1− 2

r
+

z2

r3

(
1+

2a2

r2

)]
dt2−

[
r2 +a2 +

2a2

r
− a2z2

r2

(
1+

5
r
+

2a2

r3

)]
dφ

2+

2a
r

[
2− z2

r2

(
3+

2a2

r2

)]
dtdφ−{

1− z2

r2D

[
3
r
− 4

r2 −
a2

r2

(
3− 6

r
+

2a2

r2

)]}
dr2

D
− 2z

rD

(
2
r
− a2

r2

)
drdz−[

1+
z2

r2D

(
2
r
− 2a2

r3 +
a4

r4

)]
dz2, (3.4)

where the notation

D = 1− 2
r
+

a2

r2

is introduced. Below, we also use (with a few exceptions) the notations introduced
in the original paper by Novikov and Thorne (1973) for the relativistic correction
coefficients.

Finally, the inverse of the matrix gik corresponding to a double-contravariant ten-
sor has the form:

gik =

∣∣∣∣∣∣∣∣
(gttgφφ −g2

tφ )
−1×

∣∣∣∣gφφ −gtφ
−gtφ −gtt

∣∣∣∣ 0

0 (grrgzz−g2
rz)
−1×

∣∣∣∣gzz −grz
−grz −grr

∣∣∣∣
∣∣∣∣∣∣∣∣ (3.5)

3.1.2 Circular Equatorial Geodesics

The expression for circular equatorial geodesics can be conveniently found from
the extremum condition for the distance along them. Here we follow the exposition
from Hobson et al (2006), (their paragraphs 13.10 and 13.13). Indeed, for time-like
trajectories the functional

S =
∫

Lds =
∫

gik
dxi

ds
dxk

ds
ds,

should be minimal, which is equivalent to the Euler-Lagrange equations for L:

d
ds

(
∂L
∂ ẋi

)
− ∂L

∂xi = 0, (3.6)

where U i
g ≡ dxi/ds ≡ ẋi is the four-velocity in Boyer-Lindquist coordinates. As L

does not explicitly depend on t and φ , the following quantities are conserved:

gtiU i
g = k,
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gφ iU i
g =−h,

where k and h have the meaning of the time and azimuthal covariant velocity com-
ponents, respectively.

In explicit form, using the components gik from (3.4) at z = 0, we find:(
1− 2

r

)
ṫ +

2a
r

φ̇ = k, (3.7)

2a
r

ṫ−
(

r2 +a2 +
2a2

r

)
φ̇ =−h. (3.8)

We temporarily assume that the motion is not necessarily circular and U r
g 6= 0.

Instead of the r-component of the Euler-Lagrange equations, it is more convenient
to use the condition of normalization of the four-velocity of particles with non-zero
mass:

gttk2−2gtφ kh+gφφ h2 +grr(Ur)
2 = 1. (3.9)

This yields the following equation for k and h:

ṙ2

2
+Ve f f (r) =

k2−1
2

, (3.10)

where we introduce the effective potential

Ve f f =−
1
r
+

h2−a2(k2−1)
2r2 − (h−ak)2

r3 . (3.11)

The conditions for circular motion include, first, ṙ = 0 and, second, r̈ = 0 (for the
particle to stay in a circular orbit). The latter condition is equivalent to the vanishing
of the derivative of Ve f f with respect to r:

1+
a2(k2−1)−h2

r
+

3(h−ak)2

r2 = 0. (3.12)

Equation (3.10) with ṙ = 0 and equation (3.12) allow us to determine k and h as
functions of r and then, using (3.7) and (3.8), to find U t

g and Uφ
g .

To solve the first problem, let us introduce the new variable µ ≡ h− ak and, to
facilitate manipulations, make the change u≡ 1/r. Then equation (3.10), with ṙ = 0
together with equation (3.12), yield the following equation for µ:

u2[(3u−1)2−4a2u3]µ4−2u[(3u−1)(a2u−1)−2ua2(u−1)]µ2 +(au−1)2 = 0.
(3.13)

The solution of (3.13) for a stable circular prograde orbit has the form:

µ =− a
√

u−1
[u(1−3u+2au3/2)]1/2 . (3.14)
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Using (3.14) and (3.10) taken at ṙ = 0, we find the constants h and k, as well as
the components U i

g:

Ug
t =C−1/2 B, Ug

φ = (r3C)−1/2, Ug
r =Ug

z = 0, (3.15)

where
B = 1+

a
r3/2 , C = 1− 3

r
+

2a
r3/2 . (3.16)

It is easy to verify that the modulus of this vector is equal to unity:

gik Ug
iUg

k = 1

The angular velocity as measured by the clock of an infinite observer (who mea-
sures the coordinate time t), corresponding to such motion, is

Ω =
dφ

dt
= r−3/2B−1. (3.17)

It follows that in the Schwarzschild case this value exactly coincides with the Kep-
lerian angular velocity.

3.1.3 Radius of the Innermost (marginally) Stable Orbit

Stable circular motion is no longer possible when the minimum of the function
Ve f f (r,h(rc),k(rc)) disappears at r = rc, where rc is the radius of a circular orbit.
This is equivalent to the condition

d2Ve f f

dr2

∣∣∣∣
r=rc

= 0,

which leads to the quartic equation

z4−6z2 +8az−3a2 = 0, (3.18)

where z≡ r1/2.
Using the Ferrari method (see, e.g., Korn and Korn (2000)), we write the corre-

sponding auxiliary cubic equation:

y3−12y2 +12(3+a2)y−64a2 = 0. (3.19)

The real root of equation (3.19) is related to the Cardano solution to the correspond-
ing incomplete cubic equation and is given by

y1 =−2(1−a2)1/3[(1+a)1/3 +(1−a)1/3]+4. (3.20)
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Next, having obtained y1, it is possible to use the Ferrari solution to write the
quadratic equation that gives two real roots of (3.18):

p2 +
√

y1 p+
1
2

(
−6+ y1−

8a√
y1

)
= 0 . (3.21)

The larger root of (3.21), p1, determines the boundary of the stable circular motion
of a test particle in the equatorial plane, which we denote as r = rms. Thus,

rms = p2
1 = 3+

4a√
y1
− (−y2

1/4+4a
√

y1 +3y1)
1/2. (3.22)

It is easy to verify that the result (3.22) coincides with the expression presented in
Page and Thorne (1974), (see formula (15k) therein), taking into account that the
auxiliary values Z1,2 there take the form Z1 ≡ 3− y1/2 and Z2 ≡ 4a/

√
y1 for a≥ 0

in our notation.
In the Schwarzschild metric, a = 0, we recover the well-known result that the

circular motion becomes unstable for r < 6, i.e. at distances smaller than three
gravitational radii from the black hole. For slow rotation, 1 � a > 0, we have
rms ≈ 6− 4

√
6a/3, and hence the zone of stable motion moves closer to the event

horizon. In the limit case a = 1 we find rms = 1, i.e. the marginally stable circular
orbit coincides with the gravitational radius of a black hole of extreme spin.

During accretion, gas elements in the disc slowly approach rms by losing their
angular momentum due to the action of viscous forces. Once the gas elements fall
into the region with r < rms, due to instability of the circular motion, they no longer
need to lose angular momentum to approach the black hole. This means that the
matter falls freely inside rms, and the standard accretion disc model assumes that rms
is the inner disc radius.

3.2 Choice of Reference Frame

3.2.1 Bases in General Relativity

Mechanical laws, formulated in the form of vector equations, can be written in
symbolic form irrespective of observer or reference frame. But to represent some
physical quantity describing a natural phenomenon in the form of a set of numerical
values, the measurement procedure should be specified. In Newtonian mechanics,
this means that the observer introduces a coordinate system, and then at each point
in space he/she arbitrarily constructs three basis vectors. The coordinate system and
the basis vectors can evolve over time, which is equal at all points. A tool measuring
time, together with the coordinate grid and a vector basis, form a reference frame,
in which any physical value (scalar, vector or tensor) can be measured, i.e. it can be
represented by a number or a set of numbers.



118 Viacheslav Zhuravlev

The situation in relativistic mechanics is different: since it is not possible to con-
sider time independently, it becomes the fourth component of the space-time con-
tinuum. Therefore, the choice of reference frame reduces to the construction of a
coordinate system and four basis vectors determined at each point in space-time.
In general, this set of basis vectors is usually referred to as a tetrad. Here, there is
no universal observer any more; instead, a set of observers moving along a certain
family of world lines is considered. If one of the tetrad orts, conventionally cor-
responding to the time direction, is tangent at each point to these world lines, the
tetrad is said to be ’transported’ by the observers. The last statement can easily be
understood, since in such a basis, the four-velocity of each observer at any time has
a non-zero projection only on the ’time’ ort. In other words, the observers are at rest
in this basis, i.e. transport it with them.

3.2.1.1 Coordinate Representation

Thus, the choice of coordinate system and the choice of the tetrad are inde-
pendent procedures. Nevertheless, if there is a coordinate system, xi, the tetrad is
frequently chosen in such a way that each basis vector, ei, is tangent to the corre-
sponding coordinate line. Here the moduli of orts of this so-called coordinate basis
are chosen such that their pairwise scalar products are equal to the corresponding
metric coefficients:

(ei · ek) = gik. (3.23)

We recall that in differential geometry (see paragraphs 3.1-3.4 in Hobson et al
(2006)), such coordinate orts are introduced as objects isomorphic to the partial
derivatives of an arbitrary scalar function on the manifold with respect to the coor-
dinates,

ei ≡
∂

∂xi . (3.24)

Any (tangent) vector is a linear combination of the coordinate orts, and the com-
ponents of this linear combination are called contravariant components of the vector.

In addition to ei the so-called dual basis, ei, is introduced with the orts defined as

(ei · ej) = δi
j, (3.25)

where δi
j is the Kronecker symbol. The condition (3.25) implies that each ort of the

dual basis has a unit projection on the corresponding ort of the coordinate basis and
is orthogonal to all other orts of the coordinate basis.

The dual coordinate orts, in turn, are introduced as objects isomorphic to the
coordinate differentials,

e j ≡ dxi. (3.26)

Next, if we use the fact that any tangent vector A can be alternatively presented
as a linear combination of dual coordinate orts, whose coefficients are referred to
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as covariant vector components, we obtain the well-known rule of lowering vector
indices:

Ak = Ai(ei · ek) = (Aiei · ek) = (Aiei · ek) = Ai(ei · ek) = Aigik. (3.27)

In a similar way it is easy to show that if we introduce the notation gik ≡ (ei · ek),
then due to the duality of bases, the matrix gik is inverse to the matrix gik, and the
rule of raising of vector indices holds. A similar representation in coordinate bases
can be extended to the more general case of tensors.

3.2.1.2 Tetrad Representation

In this and the subsequent sections we mostly follow the exposition given in
paragraph 7 of Chandrasekhar (1992). Assume that now we project the same vectors
and tensors on an arbitrary tetrad defined by the relations

e(a) = e(a)
i ∂

∂xi , (3.28)

where e(a)i are some functions of coordinates, and the indices labelling the tetrad
orts are in parentheses.

From the duality condition (3.25) we can introduce the dual tetrad:

e(a) = e(a)i dxi, (3.29)

where e(a)i is the matrix inverse to e(a)i.
In these matrices, there are two kinds of indices: coordinate and tetrad ones. The

coordinate indices can be lowered or raised using the metric (3.1). We can impose
an additional constraint on the tetrad:

e(a)
ie(b)i = η(a)(b), e(a)

i
e(b)i = η

(a)(b), (3.30)

where
η(a)(c) η

(c)(b) = δ(a)
(b) (3.31)

are mutually inverse matrices and η(c)(b) = diag(1,−1,−1,−1) is the Minkowski
matrix. In other words, we require that the original and dual tetrads be orthonormal
in four-dimensional pseudo-Euclidean space.

Using the above relations, it is straightforward to show that

e(a)i e(a) j = gi j, (3.32)

and therefore the following alternative expression for the interval squared holds:

ds2 = η(a)(b)(e
(a)

i dxi)(e(b)k dxk) = η(a)(b) e(a) e(b), (3.33)

which is useful below.
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Note that the values in parentheses on the right-hand side of (3.33) can be con-
sidered as infinitesimal shifts along the corresponding orts of the tetrad. Therefore,
in the introduced tetrad representation with an orthonormal tetrad, the square of an
interval takes exactly the same form as in the Minkowski space-time of special rel-
ativity. Similarly, the expressions (3.28) can be thought of as directional derivatives
along the tetrad’s orts, and these have exactly the form that the usual partial deriva-
tives, with respect to coordinates in the coordinate basis, take when changing from
the coordinate basis to the tetrad one.

Using the definitions and relations given above, it is easy to see how the tetrad
components of vectors are expressed through their coordinate components. Tetrad
components of a vector are written as

A(a) = ei
(a)Ai, A(a) = e(a)i Ai = η

abA(b). (3.34)

Conversely,
Ai = e(a)i A(a), Ai = ei

(a)A
(a).

Similar expressions can be written for a tensor of any valence. For example, for
a two-covariant tensor, we have

T(a)(b) = ei
(a)e

j
(b)Ti j = ei

(a)Ti(b),

and conversely,
Ti j = e(a)i e(b)j T(a)(b) = e(a)i T(a) j. (3.35)

Note in conclusion that the relations (3.34) and isomorphism (3.26) can be used
to find contravariant components of the four-velocity in the tetrad representation:

U (a) =
e(a)

ds
. (3.36)

That is, it is again a unit tangent vector along the world line, but now its components
are given by small shifts along the corresponding orts of the dual basis. Using (3.34)
it is easy to find the relation between the conventional coordinate components of
four-velocity, U i = dxi/ds, and its tetrad components. Covariant tetrad components
are derived from contravariant ones using the standard rule in special relativity:
lowering a spatial index is equivalent to changing the sign of the corresponding
component.

3.2.1.3 Covariant Derivative in Tetrad Representation

Let us calculate the directional derivative along a tetrad ort from a contravariant
component of a vector:

A(a),(b) = ei
(b)

∂

∂xi A(a) = ei
(b)

∂

∂xi e j
(a)A j = ei

(b)[e
j
(a)A j;i +Akek

(a);i], (3.37)
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where the semicolon denotes the usual covariant derivative in the coordinate basis.
Expression (3.37) can be recast to the form:

A(a),(b) = e j
(a)A j;iei

(b)+ e(a)k;ie
i
(b)e

k
(c)A

(c), (3.38)

whence
e j
(a)A j;iei

(b) = A(a),(b)− γ(c)(a)(b)A
(c), (3.39)

where γ(c)(a)(b) are the so-called Ricci rotation coefficients,

γ(a)(b)(c) = e(b)k;ie
i
(c)e

k
(a) . (3.40)

An important point is that for orthonormal bases satisfying (3.30), the coefficients
γ(a)(b)(c) are antisymmetric in the first two indices. Indeed,

0 = (η(b)(a)),i = (e(b)kek
(a));i = e(b)k;ie

k
(a)+ e(b)kek

(a);i = e(b)k;ie
k
(a)+ ek

(b)e(a)k;i.

Comparing this relation with (3.40) proves the stated property of the Ricci coeffi-
cients.

Finally, let us discuss one more useful property of coefficients (3.40): to calcu-
late these coefficients only partial derivatives of the components of the tetrad basis
orts are needed, and therefore the Christoffel symbols are not required. Indeed, we
consider auxiliary combinations

λ(a)(b)(c) = e(b)i, j[e
i
(a)e

j
(c)− e j

(a)e
i
(c)], (3.41)

and rewrite them in the form

λ(a)(b)(c) = ei
(a)e

j
(c)[e(b)i, j− e(b) j,i]. (3.42)

In the last expression, the ordinary partial derivatives can be substituted by covariant
ones, since the additional terms with Christoffel symbols are symmetric in i, j. Then
expression (3.42) is equal to the difference γ(a)(b)(c)− γ(c)(b)(a).

But in this case,

γ(a)(b)(c) = 1/2[λ(a)(b)(c)+λ(c)(a)(b)−λ(b)(c)(a)] (3.43)

and, using (3.41), it is possible to calculate the Ricci rotation coefficients by taking
the partial derivatives of the components of the tetrad basis orts.

We now consider formula (3.39). The left-hand side represents simply the projec-
tion on the tetrad basis of a rank-2 covariant tensor obtained by taking the derivative
of some vector field. Therefore, this combination has the meaning of the covariant
derivative of a vector in a non-coordinate basis.

Next, the right-hand side of (3.39) has exactly the same form as the covariant
derivative in a coordinate basis, with the only difference that it involves tetrad in-
dices (which can be raised or lowered, including for γ(a)(b)(c), using the Minkowski
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metric). It can be shown that the same holds for contravariant components of a vec-
tor field and for tensor fields in general.

Thus, as the components of a covariant derivative in a tetrad basis has the same
form as in a coordinate basis, it is convenient to use the same notations and terms
that are used in the coordinate basis. In particular, the Ricci rotation coefficients
are simply referred to as connection symbols in a given basis. We emphasize once
again that they should not be confused with the Christoffel symbols, which represent
another limit case of connection coefficients in a coordinate basis and have different
index symmetry.

3.2.2 A Tetrad Transported by Rotating Observers

We construct a tetrad basis related at each point in space-time to observers mov-
ing around a black hole in equatorial circular orbits with angular velocity Ω .

Strictly at z= 0, this is the free motion along geodesics found in Sect. 3.1.2. How-
ever, for a small deviation from the equatorial plane, such motion, corresponding to
constant z, is possible only if there is some external supporting force. In the case of
a gas disc, for example, this force is due to the pressure gradient.

To start the construction, we direct the time ort of the tetrad along the world
line under discussion. Using the four-vector of the geodesic found in Sect. 3.1.2, we
write it in the form

e(t) = (Ug
t +Z0)

∂

∂ t
+Ug

φ ∂

∂φ
,

where we add the correction factor Z0(z/r) to the time coordinate component, since
the modulus of the vector e(t) should be equal to unity away from the equatorial
plane as well, whereas the vector Ug itself is unitary only at z = 0. Clearly, with
account for this correction, e(t) would correspond to the four-velocity of the real
motion. A calculation of the modulus of the vector e(t) in metric (3.4) shows that it
is equal to unity under the following condition:

Z0 =−
( z

r

)2 H
2rGC1/2 ,

where we introduce the relativistic correction coefficients

G = 1− 2
r
+

a
r3/2 (3.44)

and

H = 1− 4a
r3/2 +

3a2

r2 . (3.45)

Thus, the ort e(t) is transported by the observer rotating around the black hole
with a frequency equal to the φ -component of e(t), which is independent of z. This
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frequency corresponds to the free circular motion in the equatorial plane of the black
hole, and rotation occurs in planes of constant z.

We now calculate the time ort of the dual basis. According to the convention rule
for raising and lowering coordinate indices, we have

e(t) = (Ug
tgtt +Ug

φ gtφ ) dt +(Ug
tgφ t +Ug

φ gφφ ) dφ .

Next, we consider the part of metric (3.4) containing the differentials dr and dz.
It can be rewritten in the form (see the result (3.33) in the previous section):

ds2
rz =−

[
e(r)
]2
−
[
e(z)
]2

,

where
e(r) = |grr|1/2 dr− grz

|grr|1/2 dz,

e(z) =
(
|gzz|−

grz
2

|grr|

)1/2

dz

are the radial and vertical orts of the dual basis, respectively. The coordinate com-
ponents of the vectors e(t),e(r) and e(z) satisfy the orthonormality condition (3.30),
as can be easily verified by direct substitution.

The orthonormality condition for a tetrad can now be used to determine the fourth
ort corresponding to the azimuthal direction.

From three orthonormality conditions for three already known vectors, we obtain
that for these conditions to be consistent, the following relation should hold:

e(φ)r = e(φ)z = 0,

and the time and azimuthal components should be related as

e(φ)φ =−e(φ)t
e(t)t

e(t)φ
.

Finally, the normalization condition for e(φ) yields a quadratic equation for e(φ)t ,
and the sign of the solution is dictated by the additional requirement of the choice
of a right-hand triple of space orts of the tetrad.

We thus obtain the dual tetrad basis with the leading corrections in (z/r) due to
out-of-equatorial-plane motion in the form

e(t) = C−1/2
{

G+
( z

r

)2 1
2rG

(
D+

2a
r3/2

(
F− a

r3/2 +
a2

r2

))}
dt−

C−1/2
{

r1/2F +
( z

r

)2 a
rG

Z1

}
dφ , (3.46)
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e(φ) = −
{(

D
rC

)1/2

+
1
2

( z
r

)2 1−a/r
r3/2 (DC)−1/2

}
dt+{

rB
(

D
C

)1/2

+
1
2

( z
r

)2
[
(1−a/r)

B
(DC)1/2 −

H
G

(
D
C

)1/2
]}

dφ , (3.47)

e(r) = D−1/2
{

1− 1
2D

( z
r

)2
Z2

}
dr +

z
r

D−1/2
(

2
r
− a2

r2

)
dz, (3.48)

e(z) =
(

1+
z2

r3

)
dz. (3.49)

To obtain the original basis, which we use to write the equations of motion, it
suffices to calculate the inverse of the matrix e(a)i, which yields

e(t) = C−1/2
[

B−
( z

r

)2 H
2rG

]
∂

∂ t
+(r3C)−1/2 ∂

∂φ
, (3.50)

e(φ) =
{

F
(rCD)1/2 + O

(
z2

r2

)}
∂

∂ t
+

{
G

r(DC)1/2 + O
(

z2

r2

)}
∂

∂φ
, (3.51)

e(r) =
{

D1/2 +
1
2

( z
r

)2 Z2

D1/2

}
∂

∂ r
, (3.52)

e(z) = −
z
r2 (2−a2/r)

∂

∂ r
+

(
1− z2

r3

)
∂

∂ z
. (3.53)

The following notations for the relativistic correction coefficients are introduced
in the expressions for the original and dual bases:

F = 1− 2a
r3/2 +

a2

r2 , (3.54)

Z1 = 3− 5
r
− a

r1/2 +
3a

r3/2 −
3a2

r3 +
a2

r2 +
2a3

r7/2 , (3.55)

Z2 =
3
r
− 4

r2 −
a2

r2

(
3− 6

r
+

2a2

r2

)
. (3.56)

Here, we omit the terms∼O(z2/r2) in the expression for the azimuthal ort of the
original basis due to their complexity. In addition, as we will see below, these terms
are not required in the standard accretion disc model.
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For the reader’s convenience, we here preserve the notations introduced in
Novikov and Thorne (1973) for the coefficients B,C,D,F,G, but use the standard
style of Latin letters, which is more familiar to the reader. In addition, the coeffi-
cient H is equivalent to the coefficient C introduced in Riffert and Herold (1995).
We would also like to point out that two other coefficients, A and B, introduced in
the same paper, are equivalent to our coefficients D and C, respectively. It can be
verified that the original and dual bases presented in Novikov and Thorne (1973)
coincide with the bases derived here at z = 0.

Using formulas (3.46-3.49) and (3.36), it is easy to deduce that solution (3.15)
indeed yields U (a) = (1,0,0,0) in the equatorial plane.

3.2.2.1 The Connection Coefficients

Using (3.41) and then (3.43) and knowing the matrices of the original and dual
bases given above, we can calculate the connection coefficients γ(a)(b)(c).

Of the 64 coefficients, 16 are equal to zero due to anti-symmetry of γ(a)(b)(c) in
the first two indices. For the same reason, only half of the other coefficients (i.e. 24)
have to be found. Since we are interested in the region near the equatorial plane of
the black hole, it makes sense to separate these coefficients into two groups: those
that are ∼ (z/r)0 in the leading order, and those that are proportional to the first
power of (z/r). As mentioned in Sect. 3.1.1, the latter coefficients must appear in
the vertical projection of the relativistic Euler equation, while the former emerge in
other equations.

It can be shown that
1) if there is no index (z) among the indices of γ(a)(b)(c), then γ(a)(b)(c) ∼ (z/r)0,
2) if only one such index is present, then γ(a)(b)(c) ∼ (z/r), and, finally,
3) if two indices (z) appear in γ(a)(b)(c), then this coefficient is of the second order
in (z/r).

Indeed, we examine formula (3.41). Here the brackets contain the original basis
components, which are summed with the coordinate derivatives of the dual basis
components (the raising of a tetrad index can only change the sign of the compo-
nent).
In case (1) (a),(b),(c) 6= (z). As the (t)−, (φ)− and (r)−orts of the original basis
have no z-component, only terms which do not contain derivatives with respect to z
of the dual basis components, and have no z-component of the dual (r)−ort, make
a non-zero contribution to γ(a)(b)(c). Only in these two cases can the contribution
∼ (z/r) appear, and hence we prove statement (1).

Now, in (3.41) let (b) = (z) and (a),(c) 6= (z). Then the non-zero contribution can
only be due to terms containing the z-component of the (t)−, (φ)− and (r)−orts of
the original basis, which are absent. Therefore, to check case (2) we should consider
only the variant when in (3.41) (a) = (z) or (c) = (z). Here, the terms containing
separately either r− or z−components of the (z)−ort of the original basis contribute.
In the first variant, the proportionality to ∼ (z/r) is due to exactly the component
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er
(z), while in the second, it is due to the derivative with respect to z of one of the

dual basis components that is always an even function of z, as can be easily verified.
We leave it to the reader to prove statement (3).
Counting shows that there must be 9 connection coefficients without the index

(z), and hence an even function of z, and 12 coefficients with the index (z) and hence
odd functions of z. The calculation indicates that only 4 coefficients of the first type
are non-zero, namely:

γ(t)(φ)(r) =−
1
2

H
r3/2C

γ(t)(r)(φ) =−r−3/2 (3.57)

γ(φ)(r)(t) =−r−3/2
γ(φ)(r)(φ) =−

1
r

d
dr

(
rD1/2

)
. (3.58)

To compute coefficients (3.57) and (3.58) it is sufficient to use bases taken with-
out corrections in z. When constructing the standard disc model, the following facts
are also important. First, a direct calculation shows that another 5 connection coeffi-
cients of this type are zero through corrections of the order of ∼ (z/r)2 inclusively.
This is a rigorous result, since the coefficients γ(a)(b)(c) under discussion have no
derivatives of the basis components with respect to z, and therefore any possible
unaccounted for corrections due to the terms ∼ (z/r)3 in e(r)z and er

(z) cannot con-
tribute. Second, a direct calculation similarly shows that γ(t)(z)(z) = 0 through the
order ∼ (z/r)2.

A calculation of all non-zero coefficients of the second type is a much more
cumbersome task. But as we will see below, the only coefficient of this type that is
needed has the form

γ(z)(t)(t) =
z
r3

H
C
.

We note that all connection coefficients of the type γ(a)(t)(t) vanish in the equa-
torial plane z = 0. This is consistent with the requirement that the four-velocity
U (a) = (1,0,0,0) must satisfy the geodesic equation at z = 0:

DUa

Ds
=Ub e(b)

(
U (a)

)
+η

(a)(c)
γ(c)(b)(d)U

(b)U (d) = γ(a)(t)(t) = 0. (3.59)

3.2.3 Relativistic Hydrodynamic Equations

Everywhere below, we only use the tetrad components of vectors, tensors and
covariant derivatives. Therefore, starting from this section, we will substitute the
tetrad notation by the standard one, which is familiar when using the coordinate
basis. This means that from now on we do not put tetrad indices in parentheses
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but denote them by the Latin letters i, j,k 2. In addition, we denote the connection
coefficients by Γ .

The stress-energy tensor of a viscous fluid with energy flux has the form (see,
e.g., paragraph 4.3 in Mihalas and Weibel Mihalas (1984) or paragraph 22.6 in Mis-
ner et al (1973))

T ik = (ρ + ε + p)U iUk− pη
ik +2ησ

ik +ζΘPik−U iqk−Ukqi, (3.60)

where ρ , ε , p, η and ζ are the rest-energy density, internal energy density, pressure
and two viscosity coefficients, respectively, as measured in the local comoving fluid
volume, and q is the energy flux inside the fluid as measured by a local comoving
observer.

The shear tensor is

σ
ik =

1
2

(
U i

; jP jk +Uk
; jP ji

)
− 1

3
U j

; jPik, (3.61)

with the projection operator

Pik = η
ik−U iUk. (3.62)

The divergence of four-velocity is

Θ =U i
;i. (3.63)

The relativistic Euler equation is written as

Pis T sk
;k = 0. (3.64)

The energy conservation law has the form

Us T sk
;k = 0. (3.65)

The rest-energy conservation law reads

(ρ Uk);k = 0. (3.66)

The covariant derivative in a non-coordinate basis is

Ai
; j = e j(Ai)+Γ

i
k jAk,

while the divergence of a rank-2 contravariant tensor is

Ai j
; j = e j(Ai j)+Γ

i
k jAk j +Γ

j
k jAik.

2 If one of the symbols t,φ ,r,z, appears among the indices, it means that the corresponding index
takes this value.
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The energy flux vector and the shear tensor (the deformation tensor free from
pure scaling) are purely space-like objects:

Uiqi = 0, Uiσ
ik = 0, σ

i
i = 0. (3.67)

3.3 Construction of the Standard Accretion Disc Model

3.3.1 Basic Assumptions and the Vertical Balance Equation

Thus, we consider a disc from the standpoint of local observers rotating around
a black hole near its equatorial plane with a relativistic Keplerian velocity. Before
writing down the dynamic equations in the projection onto tetrad (3.50-3.53), we
discuss the basic assumptions of the model and their consequences . In addition to
obvious assumptions about axial symmetry and stationarity of the flow (meaning
that the derivatives ∂t and ∂φ are zero) the main assumption, which we have already
used, is that of a small disc thickness, δ = h(r)/r� 1, where h(r) is the character-
istic height of the disc along the z-axis (more precisely, the disc half-thickness).

The disc symmetry with respect to the plane z = 0 implies that U t , Uφ , U r, qt ,
qφ , qr, ρ , p, η , ζ , and ε are even functions of z, and U z and qz are odd functions of
z.

We also assume that the characteristic scale of variations of these quantities in
the radial direction is much larger than that in the vertical direction, that is, their
ratio is greater than ∼ δ−13.

Next, kinematic arguments suggest that

U z ∼ δU r. (3.68)

If the energy flux determined by the vector q is proportional to the internal energy
gradient ε , then, for the local comoving observer, qt

loc = 0 and qφ

loc,q
r
loc ∼ δqz

loc.
Taking (3.68) into account implies that the projection of q onto the four-velocity
of circular equatorial motion is also small, i.e. of the order of ∼ δqz

loc. From the
standard Lorentz transformations, we obtain that qt ,qφ ,qr ∼ δqz, i.e. the energy
flux with respect to the tetrad should be directed almost normally to the disc plane.

Now, taking all of the above into account, we consider the projection of the rela-
tivistic analog of the Euler equation (3.64) onto the ort ez in more detail:

T zk
;k +UzUs T sk

;k = 0. (3.69)

3 We note that we also need to make the assumption that the velocity components in the disc plane,
U r , Uφ , may only change substantially in the vertical direction on scales ∼ r. Otherwise, the
terms in the shear tensor could arise that strongly contribute dynamically to the vertical balance
condition, which would lead to a disc totally different from the basic case of interest here.
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Using the symmetry of the physical quantities discussed above, and symmetry
properties of tetrad orts and connection coefficients (which become odd functions
of z if they have at least one index z), as discussed in Sect. 3.2.2, it is easy to check
that equation (3.69) is indeed an odd function of z. Further, we see that the first term
in (3.69) separately yields the term ∂z p, and other terms containing p are smaller
due to the smallness of U z. All other terms together can always be written as ∼
zρ f (r)(1 + g(r,z)) with the function g(r,z)∼ O(δ 0).

Thus, we arrive at the important conclusion that necessarily

1
ρ

∂ p
∂ z
∼ δ � 1. (3.70)

This means that in a thin disc the variables p, ∂r p ∼ δ 2, are small relative to
the dominant action of the gravitational force in this direction. Therefore, particles
of the disc must move in trajectories close to geodesic ones. Clearly, in a steady-
state and axially symmetric flow, this can be realized only in two cases: when the
matter moves almost radially towards the gravitating centre (and the specific angular
momentum in the disc is close to zero everywhere) or when the matter moves in
almost circular orbits (and the specific angular momentum, oppositely, is maximal).
We note that both cases are consistent with the general assumptions discussed above
and the result (3.70). However, in the last case, strict vertical hydrostatic equilibrium
holds in the disc in the first order in δ . In other words, (3.69) can be rewritten in the
form

1
ρ

∂ p
∂ z
∼ z f (r)(1+δ

2...). (3.71)

When the flow is almost radial, the corrections in parentheses in (3.71) are not
small, and their value is determined by the contribution from the prevailing radial
motion, when, due to the change in the disc thickness at each radius, the particles
are accelerated in the z direction.

Thus, the standard disc model includes one more independent assumption re-
garding the closeness of the fluid particle trajectories to equatorial circular orbits
around the central black hole. Therefore, we will additionally assume that in our
reference frame Uφ ,U r ∼ sU t with s� 1 and later we will see how this second
small parameter is related to δ .

Consequently, we write equations first not only in the leading order in δ but
also by assuming s = 0, i.e. that the flow moves along geodesic orbits and U i =
(1,0,0,0). Wherever needed, we then additionally evaluate the contribution from
the terms in the leading order in s.

3.3.1.1 Deformation of the Velocity Field

We first find the non-zero components of the shear tensor in the leading order.
First, the velocity divergence vanishes:
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Θ =U j
; j = Γ

j
k j Uk = Γ

j
0 j = 0. (3.72)

(Recall that Γ i
jk are the tetrad connection coefficients, rather than Christoffel sym-

bols, which are connection coefficients in the coordinate basis.)
Next, we have

U i
; jP

jk = Γ
i

tkη
kk−Γ

i
tt ,

and, in view of the symmetry in i and k, we see that the only non-zero components
of the shear tensor σ ik are

σ
rφ =−1

2
(
Γ

φ
tr +Γ

r
tφ
)
=

1
2

(
1
2

H
r3/2C

+ r3/2
)
=

3
4

D
r3/2C

, (3.73)

σ
rz =−1

2
Γ

z
tφ = O(z). (3.74)

3.3.1.2 Equation of Hydrostatic Equilibrium

Substituting U i = (1,0,0,0) in (3.69) and taking the smallness (due to the small
sound velocity in the flow), of several non-zero terms containing η and components
of q ,into account, we obtain

∂ p
∂ z

= ρ Γ
z

tt =−ρ
z
r3

H
C
. (3.75)

3.3.1.3 Radial Direction

The radial projection of the relativistic Euler equation for s = 0 reads

T rk
;k = 0, (3.76)

and excluding terms ∼ δ 4 containing the connection coefficients and components
of q, we have only one non-zero term of the order of δ 2 which has the form4

−[pη
rk];k = D1/2 ∂ p

∂ r
Clearly, this term should be balanced by the leading terms ∼ s. Evidently, the

contribution from
[ρU rUk];k

4 The order of components qi can be estimated as follows. In the stationary case, the divergence of
the energy flux must be of the order of the power generated due to viscous dissipation, which is, in
turn, proportional to some scalar characterizing the degree of the velocity shear and the viscosity
coefficient η . In our case, the viscosity coefficient η < ρhcs ∼ δ 2. The divergence is mainly due
to the term ∂zqz. This immediately implies that qz ∼ δ 3 and qt,φ ,r ∼ δ 4.
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should be considered first, and here it can only be due to terms containing one of the
connection coefficients of zeroth order in z and the time velocity component. There
is only one such term: 2Γ r

tφU tUφ = 2r−3/2Uφ .
Hence, we reach the important conclusion that s ∼ δ 2, i.e. the velocity compo-

nents in the disc plane are
U r,Uφ ∼ δ

2, (3.77)

which is used when determining the force balance in the azimuthal direction.

3.3.2 Azimuthal Direction

We consider the last projection of the relativistic Euler equation, or more specif-
ically, its component along the azimuthal ort. Let us proceed in the same way as
above and first write down the terms that are present in the case s = 0. Again, we
take U i = (1,0,0,0) and see that

[(ρ + ε + p)UφUk];k = 0,

since Γ
φ

tt = 0 through the order ∼ δ 2 (see the discussion at the end of Sect. 3.2.2).
Next, the term including the pressure is absent by virtue of the axial symmetry, and
terms with qi cannot contribute to any order higher than ∼ δ 4.

It thus remains to consider the contribution

[2ησ
φk];k = D1/2(2ησ

rφ ),r +(2ησ
φz),z +4ηΓ

φ

rφ
σ

rφ +η O(δ 2) =

=−3
2

D1/2
(

η
D

r3/2C

)
,r
+(ηΓ

t
zφ ),z +3η (rD1/2),r

D
r5/2C

+η O(δ 2). (3.78)

Here, we are also dealing with terms of the second order in δ 2. Therefore, it is
necessary to find the leading contribution from terms ∼ s. Again, we consider only
the prevailing part due to the perfect fluid term:

(ηφ i−UφUi)[ρU iUk];k.

The second part, which is proportional to Uφ , can be neglected since the term in
square brackets cannot contribute to the zeroth order in δ , as there are no connection
coefficients of the form Γ i

tt ∼ δ 0, as was discussed at the end of Sect. 3.2.2.
As a result, we obtain

[ρUφUk];k = ρΓ
φ

lk U lUk +ρΓ
k

lkUφU l = ρ(Γ
φ

tr +Γ
φ

rt )U
r =

−ρ
U r

r3/2

(
1
2

H
C
−1
)
≡ ρ

U r

2r3/2

E
C
, (3.79)

where
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E = 1− 6
r
+

8a
r3/2 −

3a2

r2 . (3.80)

We now introduce the notation

Tν ≡
∫ +h

−h
T rφ

ν = 2σ
rφ

∫ +h

−h
η dz, (3.81)

where Tν is the vertically integrated density of the flux of the φ -component of mo-
mentum in the radial direction. Then, by integrating (3.78) and (3.79) over the disc
thickness and combining them in one equation, we have

∂Tν

∂ r
+

2Tν

rD

(
1− 1

r

)
+

ΣU r

2r3/2

E
CD1/2 = 0, (3.82)

where the contribution from σφz vanishes due to its being an odd function of z, and
we neglect the dependence of U r on z, which gives rise to a higher-order correction
(see footnote 2). In formula (3.82) we have introduced the surface density of the
disc

Σ ≡
∫ +h

−h
ρ dz. (3.83)

The important equation (3.82) together with known boundary conditions at the
inner disc radius allows us to calculate the profile Tν(r) for the disc, provided that
the radial velocity distribution is known.

We note that the equation for Tν can also be derived from the angular momentum
conservation law, which was used in the original paper by Novikov and Thorne
(1973) (see equations (5.6.3)-(5.6.6) therein).

3.3.3 Rest Energy Conservation Law and Radial Momentum
Transfer

To solve equation (3.82), the radial velocity profile should be specified. It can be
obtained from the rest energy conservation law (3.66):

er(ρU r)+ ez(ρU z)+Γ
i

kiρUk = 0. (3.84)

Clearly, the substitution U i = (1,0,0,0) does not yield non-zero terms up to the
order ∼ δ 2 (see the discussion at the end of Sect. 3.2.2). In our reference frame, this
fact can be easily understood: the circular axially symmetric motion corresponds to
zero velocity divergence. It is straightforward to check that the following terms ∼ s
will appear in the continuity equation:

D1/2(ρU r),r +(ρU z),z−
(r D1/2),r

r
ρU r = 0, (3.85)
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where the last term arises due to the contribution from Γ
φ

rφ
ρU r, and similar terms

with other velocity components, even if they appear, have an order higher than∼ δ 4.
After integrating over z, the contribution from the second term in (3.85) vanishes

since ρ → 0 far from the equatorial disc plane, and we obtain

(ΣU rrD1/2),r = 0. (3.86)

The combination whose derivative is found in (3.86) is a constant, which must be
identified as the radial flux of matter. After additional integration over φ we obtain
that

2π ΣU rrD1/2 =−Ṁ, (3.87)

where Ṁ > 0 is the rate of the matter inflow into the disc at infinity, i.e. the mass
accretion rate.

After substituting (3.87) into (3.82), we finally obtain

dTν

dr
+P1Tν +P2 = 0, (3.88)

where

P1 =
2

rD

(
1− 1

r

)
,

P2 =−
Ṁ
4π

E
r5/2CD

.

The solution to (3.88) with the boundary condition T |rms = 0 is written in the
form

Tν =
1

F(r)

∫ r

rms

P2(x)F(x)dx, (3.89)

F(r) = exp
(∫ r

rms

P1(x)dx
)
. (3.90)

The integral (3.90) is elementary, and as a result we obtain

Tν =
Ṁ

4π r2D

∫ r

rms

E
r1/2C

dr. (3.91)

3.3.4 Energy Balance

Here, we consider equation (3.65). As above, let us set U i = (1,0,0,0) and find
terms of the leading order in δ . As in the case of the azimuthal projection of the
relativistic Euler equation, ‘perfect’ terms [(ρ + ε + p)U tUk];k and pη0k

;k do not
contribute here. From the shear term, we have
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[2ησ
tk];k = Γ

t
lkσ

lk = 2η [(Γtφr +Γtrφ )σ
rφ +O(δ 2)] = 2η [4σ

rφ +O(δ 2)].

Terms with qi contribute due to rapid change in the energy flux component nor-
mal to the disc with z:

(U tqk);k =
∂qz

∂ z
+O(δ 4).

Summing all terms, we obtain from the energy balance equation

∂qz

∂ z
= 4η

(
σ

rφ
)2

=
3
2

T rφ

ν

D
r3/2C

, (3.92)

whence, after integrating over the disc thickness, we derive the important relation

Q =
3
4

D
r3/2C

Tν , (3.93)

where Q = qz(z = h) is the vertical energy flux escaping from the disc. At this point
it is appropriate to give the dimensional energy flux Q̃ [erg cm−2 c−1]:

Q̃ =
3

8π

Ṁ0GM
r̃3 Φ , (3.94)

where the dimensionless function Φ was obtained in the remarkable paper by Page
and Thorne (1974):

Φ =

[
χ−χ0− 3

2 a ln χ

χ0
−A −B−C

χ(χ3−3χ +2a)

]
, (3.95)

where

χ ≡
√

r̃/R0 , R0 ≡= GM
c2 ,χ0 ≡

√
r̃ms/R0

A = 3(χ1−a)2

χ1(χ1−χ2)(χ1−χ3)
ln χ−χ1

χ0−χ1
,

B = 3(χ2−a)2

χ2(χ2−χ1)(χ2−χ3)
ln χ−χ2

χ0−χ2
,

C = 3(χ3−a)2

χ3(χ3−χ1)(χ3−χ2)
ln χ−χ3

χ0−χ3
,

χ1 = 2cos
( arccosa−π

3

)
, χ2 = 2cos

( arccosa+π

3

)
,

χ3 =−2cos
( arccosa

3

)
. (3.96)

The quantities χ1,χ2 and χ3 are the roots of the cubic equation

χ
3−3χ +2a = 0 .

Φ → 1 as r̃→ ∞, and Φ → (r̃− r̃ms)
2 at the inner edge of the disc r̃→ r̃ms. Note

that in the Newtonian model
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ΦN(r̃) = 1−
√

r̃ms

r̃
. (3.97)

After specifying Q, we can calculate the radial profile of the effective temperature
of the disc surface, since by definition Q = σT 4

e f f . This is the universal result of the
standard accretion disc theory: Te f f does not depend on the specific nature of the
dissipation of the kinetic energy of matter or on the mechanism of thermal energy
transfer towards the disc surface, and is proportional to the value of Ṁ, times some
universal known function of r.

Thus, we have obtained the explicit form of the viscous stress integrated over
the disc thickness, Tν , and the explicit form of the radiation energy flux from its
surface, Q. At the same time, we know only the combination ΣU r, and not each of
these variables separately. In addition, we should determine the disc half-thickness
profile, h(r), and the temperature, pressure and density distributions, T (r,z), p(r,z)
and ρ(r,z), inside it. To do this, the vertical disc structure should be calculated.

3.3.5 Energy Transfer Equation and the Vertical Disc Structure

The vertical disc structure is defined by three equations. Two of them have al-
ready been obtained above: the vertical hydrostatic balance equation (3.75) and the
thermal energy generation equation (3.92).

The remaining equation is the transfer equation for energy dissipating in the disc.
In the simplest case, the energy transfer is due to photon diffusion in the heated mat-
ter. Strictly speaking, we should write a relativistic analogue of the radiation heat
conductivity equation, which is a variant of the kinetic Boltzmann equation for pho-
tons when their mean free path is much smaller than the characteristic spatial length
of the problem. The Boltzmann equation is relativistically generalized in Section
2.6 in Novikov and Thorne (1973), in which the full transfer equation is given as
Eq. 2.6.22 (where one must multiply the second term on the left hand side by the
intensity Iν due to a misprint). The standard transition to the diffusion approxima-
tion yields the following equation (see expression 2.6.43 in Novikov and Thorne
(1973)):

qi =
1

κ̃ρ

4
3

bT 3Pik(ek(T )+akT ), (3.98)

where κ̃ is the Rosseland mean opacity of matter, T is the temperature, b is the
radiation constant and ak ≡Uk; jU j is the four-acceleration. A discussion of equation
(3.98) can be also found on p. 165 of Mihalas and Weibel Mihalas (1984).

As regards (3.98), we first note that the four-acceleration never exceeds the order
∼ δ 2, since the four-velocity itself differs from the geodesic value (free circular
equatorial motion) only in the second order in δ . In contrast, the derivative in the
first term in parentheses on the right-hand side of (3.98) for k = z raises the order
in δ , since T , as well as ε , vary significantly across the disc thickness. As a result,
as already discussed in Sect. 3.3.1, we see that qz is the leading component of the
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vector q and is determined by the equation

qz =− 1
3κ̃ρ

∂ (bT 4)

∂ z
, (3.99)

which is identical to the Newtonian form for a thin disc (see Chap. 1).
Equations (3.75), (3.92) and (3.99) must be supplemented with the equation of

state of matter
p(ρ,T ),

the opacity law
κ̃(ρ,T ),

and the explicit form of
η(ρ,T ),or T rφ

ν (ρ,T )

depending on the type of parametrization of the turbulent viscosity in the disc.
In addition, it is necessary to set boundary conditions at the integration interval

z ∈ [0,h]. In the simplest case, we assume that the disc has no atmosphere and

ρ|z=h = T |z=h = 0.

Furthermore, the energy flux vanishes in the disc equatorial plane:

qz|z=0 = 0.

Finally,

2
∫ h

0
T rφ

ν dz = Tν .

Note that the above equations and boundary conditions for the vertical disc structure
automatically guarantee the validity of equations (3.87), (3.91) and (3.93) for the
radial disc structure.

After calculating the vertical structure, we can specify the surface density distri-
bution using (3.83) and then U r using (3.87).

3.3.6 Parametrization of Turbulent Viscosity and Explicit Disc
Structure

Estimates carried out in Shakura and Sunyaev (1973) and Novikov and Thorne
(1973), according to the algorithm described in Sect. 3.3.5, show that at sufficiently
high accretion rate Ṁ, which is the free parameter of the problem, radiation energy
becomes dominant in the inner parts of the disc. An estimate of the threshold value
of Ṁ can be found, for example, in Shakura and Sunyaev (1973) (see formula 2.18
therein). It turns out that the disc thickness far away from its inner radius is inde-
pendent of r and for Ṁ of the order of and above the critical value, Ṁcr (when the
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disc luminosity reaches the Eddington value in the inner parts of the disc), δ > 1,
corresponding to a spherization of the flow (see expression 7.1 and the discussion in
Shakura and Sunyaev (1973)). In addition, later studies showed that the radiation-
dominated region is both thermally (Shakura and Sunyaev 1976) and convectively
(Bisnovatyi-Kogan and Blinnikov 1977) unstable.

This implies that for a correct description of the inner parts of accretion discs at
high accretion rates, when δ increases, terms of higher order in δ should be taken
into account. These include the radial pressure gradient ∼ δ 2 in the radial force
balance and the advection term, U rT ∂S/∂ r∼ δ 4, which arises in the energy balance
and accounts for the radial heat transfer. The latter, in fact, implies that the heat
diffusion time in the vertical direction is comparable to its radial advection due to
radial transfer of matter. In other words, the main property of the standard accretion
disc model considered here — the local energy balance in the disc — is violated, i.e.
the heat generated due to turbulent energy dissipation is no longer released locally
from the disc surface. It was found that taking the new terms into account also allows
for a correct description in the region near rms, where in the standard model U r→∞,
and the construction of a stationary solution, with δ < 1 for Ṁ of the order of and
above Ṁcr, which is stable against thermal perturbations (the so-called ‘slim-disc’,
see Paczynski and Bisnovatyi-Kogan (1981) and Abramowicz et al (1988) and their
citations list, and, e.g., Klepnev and Bisnovatyi-Kogan (2010)). Later, these results
were confirmed by numerical simulations (see, e.g. Fujita and Okuda (1998) and
Agol et al (2001)). We would like to add that a transition from a standard disc to a
slim disc with increasing Ṁ, in the relativistic model around a rotating black hole,
should occur even earlier due to the higher accretion efficiency (which is, in turn,
due to both decreasing rms and additional angular momentum loss from the disc
surface by radiation).

Now, assuming that Ṁ � Ṁcr, let us estimate the disc semi-thickness profile,
which will be useful in the next chapter, in the simplest case when the pressure is
mainly determined by fully ionized hydrogen plasma, i.e.

p = 2ρkT/mp, (3.100)

where mp is the mass of a proton, kB is the Boltzmann constant, and the opacity is
determined by Thomson scattering, κ̃ = κT = 0.4cm2/g.

Let us also assume that the kinematic viscosity ν is independent of z and can be
parametrized in the form

ν = αcsh, (3.101)

where 0 < α < 1 is the Shakura parameter determining the turbulent viscosity in the
disc (see Shakura (1972) and Shakura and Sunyaev (1973)), and cs is the speed of
sound in the equatorial disc plane. Herein, due to (3.100),

c2
s = 2kTc/mp, (3.102)

where Tc = T (z = 0).
Equation (3.99) yields
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0
dzqz

ρ = − 1
3κT

bT 4
∣∣∣∣h
0
=

1
3κT

bT 4
c .

On the other hand, ∫ h

0
dzqz

ρ =CqF
∫ h

0
ρdz =

1
2

CqΣF,

where Cq is some correction factor of the order of unity corresponding to the dif-
ference between the escaping radiation flux, Q, and its mean value along the disc
thickness. As a result, we obtain

Tc =

(
3κT

2
Cq

b
ΣF
)1/4

, (3.103)

Next, for simplicity we assume that the entropy is constant along z and, dividing
the left-hand side of (3.75) by ρ , we introduce the enthalpy, dw = d p/ρ , integrate
(3.75) over z and obtain the equatorial value of w, wc ≡ w(z = 0):

wc =−
∫ h

0
dw =

∫ h

0

z
r3

H
C

=
h2

2r3
H
C
,

Hence, using that wc = nc2
s , where n is the polytropic index, we obtain

c2
s =

h2

2nr3
H
C
. (3.104)

Finally, as a result of definition (3.81), parametrization (3.101) and equation
(3.91) we find

Tν =
3
2

D
r3/2C

αΣcsh =
Ṁ
2π

Y
r3/2D

, (3.105)

where in the second equality we introduce the new variable

Y ≡ (2r)−1/2
∫ r

rms

E
r1/2C

dr, (3.106)

which in the Newtonian limit, far away from the inner edge of the disc, tends to
unity.

Equations (3.93), (3.102), (3.103) and (3.104) are sufficient to exclude all un-
knowns except Σ and the free parameters Ṁ and α from (3.105). We thus obtain the
following surface density profile Σ :

Σ = Σ0α
−4/5Ṁ3/5r−3/5C3/5D−8/5H2/5Y 3/5, (3.107)

where the dimensional constant Σ0 combines all relevant physical constants and
numerical coefficients. Its explicit form and numerical value (which depends on the
black hole mass to which we normalize all quantities) can be found by the reader.

Now, using formulas (3.104), (3.102), (3.103) and (3.107), it is possible to derive
the profile h(r). The resulting disc aspect ratio reads δ (r) = h(r)/r:
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δ (r) = δ∗r1/20C9/20D−1/5H−9/20Y 1/5, (3.108)

where δ∗ is a constant that determines the characteristic disc thickness δ (which is
of the order of 0.001-0.01).
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Chapter 4
Relativistic Twisted Accretion Disc

Viacheslav Zhuravlev

Abstract The twisted disc forms around a rotating black hole each time when
the disc outskirts are not aligned with the black hole’s equatorial plane. We derive
equations describing the evolution of the shape of twisted disc and perturbations
of density and velocity necessarily arising in such a disc. This is done under the
following simplifying assumptions: a small aspect ratio of the disc, a slow rotation
of the black hole, and a small tilt angle of the disc rings with respect to the black
hole equatorial plane. Nevertheless, the GR effects are considered accurately . Ad-
ditionally, an analysis of particular regimes of non-stationary twist dynamics (the
wave and diffusion regimes) is presented both in the framework of the Newtonian
dynamics and taking into account Einstein’s relativistic precession. At the end of
the chapter, a calculation of the shape of a stationary relativistic twisted accretion
disc for different values of free parameters of the model is done.

4.1 Introductory Remarks

In the previous chapter we described a flat disc in the equatorial plane of a rotat-
ing black hole. The axially symmetric structure of a flat disc is evident and consistent
with the symmetry of space near the black hole. If we now relax the main assump-
tion that the flow of matter at all distances coincides with the equatorial plane, the
question arises: what would be the dynamics of this more complicated, stationary
or non-stationary, flow? Is this flow similar to a disc in any way? For thin discs
as considered here, the answer to this question proves to be positive under certain
conditions.

Viacheslav Zhuravlev
Sternberg Astronomical Institute, Lomonosov Moscow State University, Universitetsky pr. 13,
Moscow, 119234, Russia e-mail: zhuravlev@sai.msu.ru
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The Gravitomagnetic Force

The main reason for the deformation of (for example, an initially flat) disc is
that the black hole spin gives rise to an additional off-centre gravitational interac-
tion with the gas elements of the flow. It can be shown that far away from the event
horizon, but close to the equatorial plane of the black hole, this interaction is repre-
sented by an axially symmetric force field directed towards the black hole spin axis
in planes parallel to the equatorial (see Thorne et al (1986) Chapter 3, paragraph
A). The physical meaning of gravitomagnetic force becomes particularly obvious
far away from the gravitating body at r� Rg. In this case the equation of motion
for a particle of mass m near a body of mass M, and proper angular momentum J,
reads

mp
d2rrr
dτ2 = mp

(
ggg+

drrr
dτ
×HHH

)
(4.1)

where
ggg =−M

r2 eeer (4.2)

is the standard radial component of the gravitational force, and

HHH = 2
JJJ−3eeer(JJJeeer)

r3 f (4.3)

is an additional dipole field generated by the spinning body. By similarity of equa-
tion (4.1) to the equation of motion for a charged particle moving in an electro-
magnetic field, this additional field is referred to as gravitomagnetic, since it acts
similar to the Lorentz force. The gravitomagnetic force is directed perpendicular to
the spin of the central body. Clearly, this external force can change the proper an-
gular momentum of disc elements moving outside the equatorial plane of the black
hole (and hence deform the disc). Here, only the projection of the gravitomagnetic
force onto the angular momentum direction matters, which is proportional to the
sine of the angle between the angular momentum vector and the black hole spin
axis. As we will see shortly, the restriction that allows us to treat the new configura-
tion as a disc (both stationary and non-stationary) requires that the gravitomagnetic
force is smaller than the central gravitational attraction force, i.e. requires the pa-
rameter a� 1 to be small. In addition, one more restriction can be formulated: the
non-complanarity of the disc with the equatorial plane of the black hole, as well
as the degree of its deviation from the planar form (i.e. twist, warp) should not ex-
ceed certain small values for the disc to be hydrodynamically stable (see Ivanov and
Illarionov (1997) paragraph 7 and Zhuravlev and Ivanov (2011) paragraph 4.2.4).

Hydrostatic Equilibrium in a Disc under the Action of a Gravitomagnetic Force

Let us split a thin planar disc into rings of narrow width. In each ring, the motion
of gas elements is mainly due to the gravitational attraction force from the central
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body. The characteristic time of this motion is td ∼Ω−1. In addition, td determines
the time it takes for the disc to restore hydrodynamic equilibrium across the ring,
since the disc aspect ratio (the ratio of the disc thickness to the radial distance) is of
the order of the ratio of the sound velocity to the orbital velocity. This conclusion
can be also arrived at by noticing that the vertical pressure gradient is δ−1 times
smaller than the unit mass gas element acceleration, i.e. exactly as small as the ratio
of the radial size of the ring to its vertical scale. Thus, we can conclude that if other
forces, acting on a given ring from the adjacent rings or from the black hole, lead
to dynamics with characteristic time tev much greater than the dynamical one, i.e.
tev � td , and hydrostatic equilibrium is maintained in the ring. In other words, the
ring remains flat, and the entire flow preserves a disc-like form. This is undoubtedly
so in a flat disc, since in this case equally oriented rings interact via the viscous force
acting in the azimuthal direction and the angular momentum changes due to inflow
and outflow of matter accreting through the ring, with both processes occurring on
the diffusion time scale, tν ∼Ω−1δ−2� td .

Now, let the disc be tilted with respect to the equatorial plane of the black hole
by a small angle β � 1. In a flat disc the gravitomagnetic force contributes only
to the modulus of acceleration of gas elements moving in circular orbits, but now,
due to the non-zero projection of this force (∝ β ) onto the angular momentum of
the gas elements, this force makes the orbits precess around the black hole spin
axis. For free particles, this effect is described in detail in the second part of the
next paragraph in terms of the difference between the frequencies of circular and
vertical motion. We also show that the precession frequency is much smaller than
the circular frequency for a� 1 (see formula (4.14)), which is equivalent to the
condition tev� td for a ring composed of gas elements.

Differential Precession and the Twist of a Tilted Disc

Equation (4.14) suggests that the precession of the rings is differential, i.e. de-
pends on the distance to the centre. As a result, the relative orientation of initially
coaxial rings changes and the disc is no longer flat. However, we keep in mind that
under the condition tev� td , each of the rings behaves ‘rigidly’ in its own vertical
direction, which is now also a function of r. The new configuration is similar to a
twisted (or warped) disc, i.e. a flow symmetric relative to some (now not planar)
surface, which can be called the equatorial surface of the twisted disc. Here, the
intersection of the equatorial surface with a plane passing through the centre makes
up a circle – the instantaneous shape of orbits of gas elements rotating with a given
radial distance r. The disc turns into a set of rings, tilted with respect to the black
hole equatorial plane by a constant angle β , but with node lines (the line formed by
the intersection of the ring planes with the black hole equatorial plane) depending
on r , see Fig. 4.1. The node line is now determined by the position angle γ(r), mea-
sured in the equatorial plane in the positive direction from some fixed direction to
the ascending node of a given ring.
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Fig. 4.1 The geometrical image of a twisted disc consisting of rings, each tilted with the same
angle β = const with respect to the plane A, but having a position angle γ depending on its radius.
The axis x′ is directed towards the ascending node of the particular ring (bold line). The disc is
intersected by the semi-transparent plane B, which contains this ring. The azimuthal angle ψ is
measured counterclockwise from the ascending node of the ring. It can be seen that the plane B is
partially below the disc surface (plotted in light colour in this case) and partially above it (plotted
in dark colour in this case). Additionally, two groups of points are plotted on the ring displayed by
the bold line: the first of them are located at ψ±π/2 (filled circles), while the others are located at
ψ = 0,π (empty circles). The first group corresponds to the position on the ring, where the normals
to the plane B and to the disc surface coincide with each other, while the second group corresponds
to the position on the ring, where those normals are the most divergent.

Radial Projection of the Pressure Gradient

The key point here is that the pressure gradient in a twisted disc, directed (as in
any thin disc in general) almost normal to its warped surface, is not normal to the
planes of the rings composing the disc. Therefore, we conclude that the pressure
gradient acquires two projections, see Fig. 4.2. The main projection is coaxial with
the rotational axis of each ring. Let us here denote it by (∇p)ξ , where ξ is the
distance from the equatorial surface of the twisted disc measured along the direction
of rotation of the ring (ξ reduces to z in the case of a flat disc). We note from
the beginning that (∇p)ξ ∝ ξ due to hydrostatic equilibrium across the ring. The
second projection of the pressure gradient, conventionally denoted as (∇p)r, lies in
the ring’s plane along the radial direction connecting the disc centre and a given gas
element of the ring. The ratio of these two projections is a small value proportional
to the rate of change of orientations of the rings in the disc, which, in turn, depends
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on the radial direction chosen in the plane of the given ring. From purely geometrical
considerations, we show in detail in what follows that for a disc with β = const, the
ratio (∇p)r/(∇p)ξ ∝ βdγ/dr cosψ , where ψ is the angle measured in the azimuthal
direction for the given ring from its ascending node to the given gas element. Note
that the normal to the twisted disc surface is orthogonal to the ring’s plane only
in two diametrically opposite points – where the plane of the given ring intersects
with the planes of the adjacent rings. At β = const, these points are characterized
by ψ =±π/2. At the same time, in other pair of points with ψ = 0,π , the value of
(∇p)r reaches both positive and negative maxima.

Fig. 4.2 A sketch of a zone of a twisted disc in the vicinity of an empty circle, located at the
particular disc ring at ψ = π , see Fig. 4.1. The straight line t is tangent to the ring, while the
straight line c is the intersection of the planes A and B in Fig. 4.1. The dashed part of the line
indicate that it is obscured to the observer by the disc surface. There are two normals originating
from the point displayed by an empty circle: one to the plane of the ring, npl , and one to the disc
surface, nsur .
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Flow Lines, Keplerian Resonance, and Perturbation of Velocity

Thus, in a flat disc, in the leading order in δ � 1, the dynamics in the radial direc-
tion is controlled by the gravitational force, and the corrections ∼ δ 2 are neglected,
whereas in a twisted disc the radial projection of the pressure gradient starts addi-
tionally contributing to the radial balance. This addition, on the one hand, depends
on the degree of the twist, and on the other hand, increases proportionally to the dis-
tance from the equatorial disc surface, ξ . Further, since it also depends harmonically
on the azimuthal direction, the gas elements (for ξ 6= 0) are subjected to a periodic,
with the orbital period, disturbance by this force, and their orbits become ellipses
with low eccentricity. As is well known, the eigenfrequency of the small oscilla-
tions of free particles in eccentric orbits is equal to the epicyclic frequency, κ . As
the pressure gradient projection considered here excites exactly such oscillations,
the radial profile of the epicyclic frequency, κ(r), is an important characteristic that
determines the shape of both stationary and non-stationary twisted configurations.
In the next section, we derive the required relativistic profile κ(r) for equatorial cir-
cular orbits in the Kerr metric (see equation (4.10)). Note from the beginning that in
the special case of Newtonian gravity κ = Ω , and hence the action of the external
exciting force on gas elements with the same frequency results in a resonance. This
means that the amplitude of the perturbed motion, characterized by perturbation of
the orbital velocity, v, increases without limit. This growth, however, is always lim-
ited by the turbulent viscosity in the disc. Indeed, since the exciting force amplitude
∝ ξ , so is the amplitude of v. But this would suggest the presence of a vertical
shear, ∂ξ v, in each ring. Together with the vertical density gradient (and hence the
vertical gradient of the dynamic viscosity) in the disc, this gives rise to a volume
viscous force that damps the driving of individual layers of each disc ring through
a resonance force. Note that close to the black hole, where the frequency κ deviates
from Ω , the amplitude v remains limited even in the absence of viscous forces. This
allows for the existence of stationary twisted discs with low viscosity around black
holes, in which β (r) takes an oscillatory form (see Ivanov and Illarionov (1997)).

The Asymmetrical Density Distribution in a Twisted Disc and the Torque due to a
Central Gravitational Force

Thus, we see that the twist of the disc caused by the gravitomagnetic force nec-
essarily results in a perturbation of the circular motion of gas elements in the disc
rings. The velocity field of this perturbation, v, depends on r (in addition to being
proportional to ∝ ξ , as explained above) and is determined by the current shape of
the disc. By virtue of the continuity of the flow, this gives rise to density inhomo-
geneities outside the disc equatorial surface, ρ1 ∝ ξ . Since (∇p)r ∝ cosψ , these in-
homogeneities take opposite signs in the diametrically opposite points of any given
ring. But this implies that the ring is subject to the total torque of the central gravi-
tational force acting on the domains with enhanced density outside of the equatorial
plane of the ring (i.e. outside ξ = 0). We denote this torque by Tg. Since the disc
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is thin and the gravitational acceleration along the axis of a ring is itself ∝ ξ , the
corresponding component of the gravitational force, and Tg as well, are quadratic in
ξ . In addition, recall that the torque Tg is proportional to the small warp magnitude,
Tg ∝ βdγ/dr. Thus, we arrive at the conclusion that the dynamics of the twisted
disc rings is controlled by Tg, together with the torque due to the gravitomagnetic
force discussed earlier in this introductory section. Note that in the case β = const
considered here, (∇p)r and, correspondingly, ρ1 take their maximum absolute val-
ues (with opposite signs) at ψ = 0,π , i.e. at the node line of each ring 1, see also
Fig. 4.4. But this implies that Tg lies in the plane formed by the angular momentum
of each ring and the black hole spin axis. By virtue of the symmetry of the problem,
the total contribution to Tg from other azimuths does not alter its direction. There-
fore, immediately after the gravitomagnetic force turns an imaginary tilted planar
disc into a twisted configuration with β = const, the gravitational force acting on
the asymmetrically located matter of the disc, relative to the surface ξ = 0, tends to
change the tilt angles of the disc rings: either to align the rings with the equatorial
plane of the black hole or, conversely, to remove them from it. On the other hand,
once β becomes dependent on r, the maxima of absolute values of (∇p)r are shifted
from the node line of each ring to some new ψ , which gives rise to a component
in Tg that also contributes to the precession motion of the disc rings, just like the
gravitomagnetic torque.

Additional Influence of the Viscous Torque

The dynamics of twisted discs as sketched above is complicated due to the pres-
ence of non-zero viscosity in the disc. First of all, each ring of the disc is subjected
to the action of the viscous force arising due to the difference between the direction
of the tangential velocity of the ring and that of the adjacent rings. This difference is
maximal in the directions where the ring planes intersect, i.e. exactly where (∇p)r
vanishes, see Fig. 4.3. In the above example of a configuration with β = const, this
corresponds to ψ =±π/2, i.e. perpendicular to the node line of the rings. The vis-
cous force, being proportional to the difference in tangential velocities, is directed
at these points perpendicular to the ring plane and has different signs on different
sides of the node line. Therefore, the corresponding torque, Tν , is perpendicular to
the plane made up by the angular momentum of the ring and the black hole spin
axis. In other words, the viscous interaction between the disc rings leads only to
their precession around the black hole spin axis, see Fig. 4.4. Note also that the
viscous torque Tν ∝ βdγ/dr, which appears due to the difference between the tan-
gential velocities of adjacent rings, and Tν ∝ ξ 2 due to the viscosity coefficient. It is
important to note that as soon as the profile β (r) is formed due to the gravitational
torque Tg, the viscous torque Tν also starts causing alignment/misalignment of the
ring with the equatorial plane of the black hole. This happens for the same reasons

1 For the sake of making the description as rigorous as possible, it is important also to add that
the coincidence of azimuthal location of maxima of (∇p)r and ρ1 occurs only when the effect of
viscosity on the gas elements of the ring is neglected.
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npl = nsur

Δυaz

Fig. 4.3 A sketch of the zone of a twisted disc in the vicinity of the filled circle located at the
particular ring at ψ = π/2, see Fig. 4.1. The visible part of the disc is transparent in the figure,
while the part of it obscured by the semi-transparent plane B shaded, see Fig. 4.1. Dashed and
dot-dashed lines represent the rings adjacent to the particular ring, with larger and smaller radii,
respectively. There are two normals originating from the point indicated by the filled circle: to the
plane of the ring, npl , and to the disc surface, nsur . In addition, we have the velocities of the flow
rotation corresponding to the displayed rings, evaluated at the same ψ = π/2 and transported to
this point. Their difference is the relative velocity ∆vaz, which causes the emergence of a viscous
force acting on the particular ring from the adjacent rings.

as Tg also starts contributing to the precession motion, and as discussed above, the
location of the intersection between planes of adjacent rings becomes shifted in the
azimuthal direction.

Additional Advection Effects

In addition to causing the appearance of Tν , the viscosity in a twisted disc, like
in a flat accretion disc, leads to radial diffusion transfer of the angular momentum
component parallel to the equatorial plane of the black hole (which is non zero
exactly for a tilted/twisted disc) towards the disc centre, due to simple transport of
the accreting matter, and towards its periphery due to the corresponding outflow
of angular momentum. In the case of a relativistic disc, an additional loss of this
angular momentum component occurs due to thermal energy outflow in the form of
radiation from the disc surface (see Eq. (C6) in Zhuravlev and Ivanov (2011)).

All forces participating in the dynamics of a twisted disc appear in the so-called
‘twist’ equation – the master equation of the twisted disc theory. This equation is
derived and analyzed in the subsequent sections.



4 Relativistic Twisted Accretion Disc 149

Fig. 4.4 A sketch of the forces acting on a particlular ring in a twisted disc, see Fig. 4.1. Although
both the central gravitational force, Fg, and the viscous force, Fν , are non-zero everywhere along
the ring, their vectors are displayed here in the points of their maximum magnitude only, see Fig.
4.1 and also Fig. 4.2 and Fig. 4.3. The full averages of these forces vanish, whereas the corre-
sponding full torques, Tg and Tν , are non-zero. In this case (look at the direction of the angular
momentum of the particular ring, L) the viscous torque causes precession of the ring, whereas the
central gravitational torque causes evolution of its inclination.

4.1.1 Weakly Perturbed Circular Equatorial Motion: Epicyclic
Frequency and Frequency of Vertical Oscillations

In a twisted disc, we assume motion of matter outside the equatorial plane of the
Kerr metric. This motion is not necessarily circular in the projection onto that plane.
Therefore, we first analyze the properties of free particles moving in orbits slightly
different from circular ones.

We first assume that the particles move exactly in the equatorial plane but in
slightly non-circular orbits. This problem can be solved using relativistic hydrody-
namic equations with zero pressure, and by assuming that there is a small deviation
from the purely circular velocity. Also, instead of equations (3.64) and (3.65), it is
better to use the original equations in the form

T ik
;k = 0, (4.4)
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where in the considered case of free motion, T ik = ρU iUk and ρ = const. Under the
last assumption, the velocity field, as follows from the rest-energy conservation law
(3.66), is divergence-free, and (4.4) is equivalent to the following equation:

U i
;kUk = 0. (4.5)

We now consider a small deviation from the four-velocity of the circular equatorial
motion and denote it by vi. Unperturbed motion corresponds to rest in the projection
onto tetrad (3.50-3.53), used to construct the flat accretion disc model, i.e. is given
by the four-velocity U i

0 = {1,0,0,0}. Substituting the sum U i
0+vi in (4.5), we obtain

linear equations for small perturbations of the four-velocity vi, which is assumed to
be a function of t only:

vi
;kUk

0 +U i
0;kvk = 0. (4.6)

Taking into account that U i
0;k = Γ i

tk, for i = 1,2 we obtain the set of equations

vr
;t +Γ

r
tφ vφ =C−1/2B

dvr

dt
−2r−3/2vφ = 0, (4.7)

vφ
;t +Γ

φ

tr vr =C−1/2B
dvφ

dt
+ r−3/2

(
1− 1

2
H
C

)
vr = 0. (4.8)

It follows that small perturbations of the four-velocity components in the equato-
rial plane of the rotating black hole oscillate in time. For example, vr satisfies the
equation

d2vr

dt2 +
2C

r3B2

(
1− H

2C

)
vr = 0, (4.9)

which implies that the square of the frequency of these oscillations, epicyclic by
definition, has the form

κ
2 = r−3B−2(2C−H) = r−3

(
1+

a
r3/2

)−2
(

1− 6
r
+

8a
r3/2 −

3a2

r2

)
. (4.10)

A somewhat different derivation of κ can be found in the Appendix in Okazaki
et al (1987). It is important to note that (4.10) contains a derivative with respect to
the coordinate time, and therefore the epicyclic frequency is determined by the clock
of an infinitely remote observer, similarly to the circular frequency (3.17) introduced
above. By comparing equation (3.18), which defines the location of the innermost
stable circular equatorial orbit in the Kerr metric, rms, with (4.10), we infer that
κ2(rms) = 0. For r < rms the epicyclic frequency becomes imaginary, and equation
(4.9) has exponentially growing solutions. This must be true since, in this region,
free circular motion around a rotating black hole becomes unstable. In Sect. 3.1.3
this result was obtained from an analysis of the form of the effective centrifugal
potential, in which a test particle moves in an equatorial circular orbit. We see that
rms can be determined alternatively from the calculation of the profile κ2(r) in the
Kerr metric.
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It is well known that for Newtonian motion, so-called Keplerian degeneration
occurs when κ =Ω for non-circular motion, which causes the non-relativistic orbits
to be closed. However, this symmetry is broken for relativistic free motion, and the
epicyclic frequency κ differs from Ω already close to a non-rotating (a = 0) black
hole, where its square is

κ
2 = r−3

(
1− 6

r

)
= Ω

2
(

1− 6
r

)
< Ω

2. (4.11)

The difference between the epicyclic and circular frequencies results in the well
known effect of precession of the elliptical orbit. Far away from the horizon of a
Schwarzschild black hole, i.e. for r� 1, the frequency of the orbits rotation, called
the Einstein precession frequency, is Ωp ≈ 3/r5/2.

Suppose now that we rotate together with the test particle at some radius. When
considering the problem in the projection onto tetrad (3.50-3.53), this particle re-
mains at rest. We now impart to the particle a small velocity in the direction per-
pendicular to the equatorial plane. Equation (3.75) of hydrostatic equilibrium for
a flat disc implies that in our reference frame the particle, being in free motion, is
subjected to acceleration that is proportional to z and tends to return the particle
to z = 0. As a result, the test particle oscillates harmonically with a frequency the
square of which is

Ω
l
v

2
=

H
r3C

, (4.12)

where the superscript ‘l’ serves as a remainder that the frequency is measured in the
reference frame comoving with the particle in its main circular equatorial motion.
To re-define this frequency as measured by the clock of an infinite observer, as was
done for both circular and epicyclic frequencies, the frequency Ω l

v must be divided
by the time dilation factor (the difference between the proper time of the particle
and the time at infinity), i.e. by the t−component of the four-velocity (3.15). Thus,
the square of the frequency of vertical oscillations is

Ωv
2 = r−3B−2H = r−3

(
1+

a
r3/2

)−2
(

1− 4a
r3/2 +

3a2

r2

)
, (4.13)

which coincides, for example, with the expression presented in Kato (1990) (see
also Ipser (1996)). Eq. (4.13) implies that around a non-rotating black hole Ωv = Ω .
This means that the vertical and circular motions have the same period, and the
total motion of the particle is again a circular motion in a closed orbit whose plane,
however, is now slightly tilted towards the initial equatorial plane. The situation
changes for a 6= 0, since for Ωv 6= Ω the orbit is not closed any more, and the orbital
plane starts precessing around the spin axis of the black hole. The frequency of
the orbital precession is equal to the difference between the circular and vertical
frequencies. For a slowly rotating black hole with a� 1 the precession frequency
of a slightly tilted orbit is
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ΩLT = Ω −Ωv ≈ r3/2
(

1− a
r3/2

)
− r3/2

(
1− 3a

r3/2

)
=

2a
r3 �Ω . (4.14)

This is simply the angular velocity of the frame dragging by the rotating black hole
(see equation (3.3)) in the limit a� 1. The frequency ΩLT is also referred to as the
Lense-Thirring frequency.

In the most general case, where the test particle deviates from circular motion si-
multaneously in the vertical and horizontal directions, the particle’s motion in space
can be described by a slightly elliptical orbit, with both plane and apse line turn-
ing with an angular velocity proportional to the difference between the circular and
vertical frequency and the difference between the circular and epicyclic frequency,
respectively. For a� 1, the precession of the orbital plane occurs on a timescale
much longer than the dynamical time, tLT � td , where tLT ∼ Ω

−1
LT (see the discus-

sion in the previous section).

4.2 Choice of Reference Frame

4.2.1 The Metric

Taking the general conclusions of Sect. 4.1 into account, we here consider slowly
rotating black holes, a� 1. In this case, a linear expansion of the Kerr metric in the
parameter a is sufficient. Then the formula (3.1) takes the form

ds2 = (1−2/R)dt2− (1−2/R)−1dR2−R2(dθ
2 + sin2

θdφ
2)+4

a
R

sin2
θ dφ dt.

(4.15)
Metric (4.15) is identical to that of a non-rotating black hole written in Schwarzschild
coordinates, except for one non-diagonal term responsible for the Lense-Thirring
precession.

Our main purpose in this section is to introduce the relativistic reference frame
that follows the disc twist. The symmetry of the problem implies that the equations
of motion should have the simplest form in such a frame. As for a flat disc, it is
convenient to use some orthonormal non-coordinate basis. For this basis to follow
the disc shape, its two spatial orts should be tangential to the disc symmetry plane.
At each spatial point we take the orts of the ‘flat’ basis, which are determined,
say, by the equatorial plane of the black hole, and rotate them by the angles β and
γ , defining the disc shape. This is done in the simplest way by using a Cartesian
coordinate system with the z-axis parallel to the black hole spin. However, we should
first understand which four-dimensional basis (whose dual tetrad must transform the
metric (4.15) into the Minkowski metric) in the flat-space limit would produce the
spatial part described by the Cartesian reference frame.

This can be done by changing the radial variable in (4.15), namely, by passing
from R to the so-called ‘isotropic’ radial coordinate, RI :
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R = RI

(
1+

1
2RI

)2

. (4.16)

Substituting (4.16) into (4.15) yields

ds2 =

(
1− 1

2RI

1+ 1
2RI

)2

dt2−
(

1+
1

2RI

)4

(dR2
I +R2

I dθ
2+R2

I sin2
θdφ

2)+4
asin2θ

RI

(
1+ 1

2RI

)2 dt dφ ,

(4.17)
where the second term represents an elementary spherical volume. Now, it is
easy to transform to Cartesian coordinates via the change {x = RI cosφ sinθ ,y =
RI sinφ sinθ ,z = RI cosθ}. Using R2

I sin2
θdφ = xdy− ydx we have

ds2 = K2
1 dt2 +2aK1K3(xdy− ydx)dt−K2

2 (dx2 +dy2 +dz2), (4.18)

where

K1 =
1− 1

2RI

1+ 1
2RI

, K2 =

(
1+

1
2RI

)2

, K3 =
2

R3
I

1

1−
(

1
2RI

)2 , (4.19)

are functions of RI = (x2 + y2 + z2)1/2 only.
Metric (4.18) generates the following dual basis

et = K1dt +aK3(xdy− ydx), ex = K2dx, ey = K2dy, ez = K2dz. (4.20)

Note that basis (4.20) corresponds to observers at rest in Schwarzschild coor-
dinates, since their world lines, defined by the condition U i = ei/ds = {1,0,0,0},
correspond to the equalities dx = dy = dz = 0. Their identical clocks are synchro-
nized in such a way that in equal time intervals, determined by the ort et , light
travels an equal distance in any direction defined by the combination of ex,y,z. If the
observers were to use the coordinate time t, they would discover, for example, that
the light signal in the azimuthal direction, prograde with the black hole spin, travels
a larger distance than in the opposite (retrograde) direction. This follows from the
frame-dragging effect of a rotating black hole and is equivalent to the well-known
tilt of light cones in the azimuthal direction. Finally, we note that another choice of
orthonormal basis is possible in principle, which also compensates for the space-
dragging effect. This basis is called the frame of locally non-rotating observers, and
is moving with an azimuthal angular velocity equal to (3.3). Mathematically, this
corresponds to a correction of the azimuthal ort instead of the time ort (see Bardeen
et al (1972)).

Below, we need to rotate the spatial part of (4.20), so as to obtain the dual twisted
basis and then the original basis, which, as we recall, is needed to write down the
projection of the hydrodynamic equations. For this, let us first introduce the twisted
cylindrical coordinates.
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4.2.2 Twisted Coordinates

X

Y

Zξ R

P

ψ

γ

β

O

r

Fig. 4.5 Twisted cylindrical coodinates {r, ψ, ξ}.

We define the twisted cylindrical coordinates {τ,r, ψ, ξ} such that the condition
ξ = 0 determines a coordinate surface coincident with the equatorial surface of a
twisted disc. Here, τ , r, ψ and ξ are the new time variable and twisted analogues of
the radial, azimuthal and vertical cylindrical coordinates, respectively2 These coor-
dinates were first introduced in Petterson (1977) and Petterson (1978). At each fixed
r = const, the angle ψ is measured in the positive direction from the ascending node
of the circle ξ = 0 crossing the equatorial plane of the black hole. The relation be-

2 Here and hereafter, r denotes the twisted radial coordinate.
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tween {τ,r, ψ ξ} and {t, x, y z} can be obtained by a sequence of rotations at each
radial distance by the angles β (r,τ) and γ(r,τ).

Let us take the radius vector with coordinates τ

r cosψ

r sinψ

ξ

 , (4.21)

where the three spatial Cartesian coordinates are defined in a frame with the z-axis
tilted by the angle β (r,τ) towards the black hole spin, and the x-axis lying in the
black hole equatorial plane and turned by the angle γ(r) relative to some direction
common for all r.

Next, we consecutively rotate this frame by the angle β (r,τ) about its x-axis in
the negative direction and then by the angle γ(r,τ) about its z-axis in the negative
direction. After these two rotations, this frame transforms into a ‘flat’ Cartesian
frame common for all r, with the xy-plane coinciding with the equatorial plane of
the black hole. Herewith, the new coordinates of the radius-vector are obtained by
multiplying (4.21) first by the matrix

A1(β ) =

1 0 0 0
0 1 0 0
0 0 cosβ −sinβ

0 0 sinβ cosβ

 , (4.22)

and then by the matrix

A2(γ) =

1 0 0 0
0 cosγ −sinγ 0
0 sinγ cosγ 0
0 0 0 1

 . (4.23)

As a result, we obtain the following relation between the twisted cylindrical and
the ‘flat’ Cartesian coordinates in the linear approximation in small β :

t = τ

x = r cosγ cosψ− sinγ (r sinψ−ξ β )
y = r sinγ cosψ + cosγ (r sinψ−ξ β )
z = rβ sinψ +ξ .

(4.24)

4.2.3 A Tetrad Transported by Observers Following the Twist

We now move from the ‘flat’ basis (4.20) to the twisted one by rotating its spa-
tial orts by the twisting angles at each spatial point. First, we need to perform the
rotation strictly opposite to what we did in the previous paragraph. This means that
we should take basis (4.20) as a column and first multiply it by the matrix A2(−γ)
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and then by the matrix A1(−β ). After that, since we wish to obtain the basis corre-
sponding to the (twisted) cylindrical frame, it is necessary to additionally ‘advance’
the three spatial orts by the azimuthal angle ψ , which is achieved by additional
multiplication of the basis by the matrix A2(−ψ).

As a result, we obtain a twisted dual basis, which contains some linear combina-
tions of the ’flat’ coordinate orts, {dt, dx, dy, dz}. It remains to express it as linear
combinations of coordinate orts of the twisted coordinate frame, {dτ, dr, dψ, dξ}.
For this, it is sufficient to take differentials of the coordinate transformation (given
by (4.24) in the linear approximation in β ) and to substitute them in the twisted dual
basis obtained after the rotations. It can be verified that in linear order in β and a,
we have

eτ = (K1−arξ K3∂ϕU)dτ +aξ K3∂ϕ(Z− rW )dr+arK3(r−ξ Z)dϕ−arK3∂ϕ Zdξ ,
(4.25)

er =−ξ K2Udτ +K2(1−ξW )dr, (4.26)

eϕ =−ξ K2∂ϕUdτ−ξ K2∂ϕWdr+ rK2dϕ, (4.27)

eξ = rK2Udτ + rK2Wdr+K2dξ , (4.28)

where we introduce the new azimuthal variable ϕ = ψ + γ(r) and change to partial
derivatives with respect to the corresponding new coordinates.

We also introduce new variables characterizing the disc geometry:

Ψ1 = β cosγ, Ψ2 = β sinγ (4.29)

and from now on use them instead of the angles β and γ . Additionally,

Z = β sinψ =Ψ1 sinϕ−Ψ2 cosϕ, U = Ż, W = Z′, (4.30)

where partial derivatives with respect to τ and r are denoted by the dot and the
prime.

It follows that for β = γ = 0 and with an additional transition to Cartesian coor-
dinates, basis (4.25-4.28) is transformed into the ‘flat’ basis (4.20).

As discussed above, observers transporting basis (4.20) are at rest in the Schwarzschild
coordinates. On the contrary, observers associated with basis (4.25-4.28) move in
space by following the changing shape of the twisted disc (in non-stationary dy-
namics).

As we have seen in Chap. 3, the original basis, onto which the hydrodynamic
equations are projected is obtained by inverting the dual basis matrix. Using (4.25-
4.28) in an approximation linear in β and a, we have

eτ =
1

K1

(
∂τ +ξU∂r +

ξ

r
∂ϕU∂ϕ − rU∂ξ

)
, (4.31)

er =
1

K2

(
−aξ

K3

K1
∂ϕ Z∂τ +(1+ξW )∂r +

ξ

r
∂ϕW∂ϕ − rW∂ξ

)
, (4.32)
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eϕ =
1

K2

(
−a

K3

K1
(r−ξ Z)∂τ −aξ

K3

K1
rU∂r +

(
1
r
−aξ

K3

K1
∂ϕU

)
∂ϕ +ar

K3

K1
rU∂ξ

)
,

(4.33)

eξ =
1

K2

(
ar

K3

K1
∂ϕ Z∂τ +∂ξ

)
. (4.34)

Using the original and dual bases, together with the algorithm presented in
Sect. 3.2.1, we can now calculate the connection coefficients. This very cumber-
some but straightforward procedure yields the following non-zero connection coef-
ficients in a linear approximation in β and a:

Γτrτ =
K′1

K1K2
, Γτrϕ = a K3

K2
2

(
1− 1

2 (r−ξ Z)K4
)
,

Γτrξ =−a K3
K2

2
∂ϕ Z

(
1− 1

2r

(
r2 +ξ 2

)
K4
)
, Γτϕr =−Γτrϕ ,

Γτϕξ = a K3
K2

2

(
Z + ξ

2r (r−ξ Z)K4

)
, Γτξ τ =

ξ

r
K′1

K1K2
,

Γτξ r =−Γτrξ , Γτξ ϕ =−Γτϕξ ,

Γrϕτ =
ξ

r
1

K1
∂ϕU−Γτrϕ , Γrϕr =

ξ

r
1

K2
∂ϕW,

Γrϕϕ = (rK2)
′

rK2
2
−aξ

K3
K1K2

∂ϕU, Γrξ τ =
U
K1
−Γτrξ ,

Γrξ r =
W
K2
− ξ

r
K′2
K2

2
, Γrξ ϕ =−ar K3

K1K2
U,

Γrξ ξ =
K′2
K2

2
, Γϕξ τ =

1
K1

∂ϕU−Γτϕξ ,

Γϕξ r =
1

K2
∂ϕW, Γϕξ ϕ =− ξ

r
K′2
K2

2
−ar K3

K1K2
∂ϕU,

(4.35)

where K4 ≡ K3/K1(K1/K3)
′. The other non-zero Γi jk, as usual, can be obtained by

taking the asymmetry in the first two indices into account.
Thus, the basis (4.31-4.34) together with the connection coefficients (4.35) are

the sum of two parts: the main part that persists at β = 0 and a small additional part
∝ β . In what follows, we denote these parts ‘B0’ and “B1’, respectively.
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4.3 The Set of Twist Equations

4.3.1 Projection of the Dynamical Equations onto the Twisted
Basis for a Thin Disc

4.3.1.1 Separation of the Equations into Two Sets Describing a Flat and a
Twisted Disc

Let us use the relativistic hydrodynamic equations in the original form:

T ik
;k = 0, (4.36)

where the stress-energy tensor and its components are presented in Sect. 3.2.3. Equa-
tions (4.36) should now be projected onto the twisted basis (4.31-4.34). To do this,
we assume that β � 1. In other words, mathematically we consider the twist of the
disc as a small perturbation to its ‘ground’ state, i.e. to the model of a flat disc, also
referred to as the background. It is important to note that the appearance of a twist
gives rise to new terms in the equations, not only due to the bending of the basis,
but also due to the appearance of additional perturbations of the physical quantities
themselves that enter the stress-energy tensor, including the density, pressure and
four-velocity.

Thus for a twisted disc, instead of (4.36), we may write

((T0
ik +T1

ik);k)0 +((T0
ik +T1

ik);k)1 = 0, (4.37)

where T0
ik corresponds to the background state and T1

ik is a small Eulerian per-
turbation of the stress-energy tensor. The indices 0 and 1 that follow the notation
of the covariant divergence mean that the divergence is taken in bases B0 and B1,
respectively.

The action of the covariant divergence with index 0 on T0
ik, evidently, yields 0,

since these are equations for the background:

(T0
ik

;k)0 = 0. (4.38)

Then, in the approximation linear in β , we find the twist equations:

(T1
ik

;k)0 +(T0
ik

;k)1 = 0. (4.39)

We assume that in a twisted disc the four-velocity, pressure, rest-mass energy
density, internal energy, viscosity coefficient and energy flux density, as defined in
their standard sense (see Sect. 3.2.3), are given by

U i =U i
0 + vi, p = p0 + p1, ρ = ρ0 +ρ1, ε = ε0 + ε1,

η = η0 +η1, qi = qi
0 +qi

1,
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respectively. Here, the indices 0 and 1 denote values related to the background and
perturbations, respectively, and vi are perturbations of the four-velocity3

Thus, T ik
0 is a stress-energy tensor which contains only unperturbed quantities in

accordance with definition (3.60) and its perturbation has the form

T ik
1 = w1U i

0Uk
0 +w0(viUk

0 +U i
0vk)− p1η

ik +2η1σ
ik
0 +2η0σ

ik
1 −

U i
0qk

1−Uk
0 qi

1− viqk
0− vkqi

0, (4.40)

where w0 = ρ0 + ε0 + p0 is the background enthalpy and w1 = ρ1 + p1 + ε1 its
perturbation.

In addition, σ ik
0 is a shear tensor which contains only unperturbed quantities in

accordance with definition (3.61), and σ ik
1 is its perturbed part of the form

σ
ik
1 =

1
2
[(vi

; j)0P jk
0 +(vk

; j)0P ji
0 ]− 1

3
(v j

; j)0Pik
0 +

1
2
[(U0

i
; j)0P jk

1 +(U0
k
; j)0P ji

1 ]− 1
3
(U0

j
; j)0Pik

1 +

1
2
[(U0

i
; j)1P jk

0 +(U0
k
; j)1P ji

0 ]− 1
3
(U0

j
; j)1Pik

0 , (4.41)

where Pik
0 is the projection tensor that contains only unperturbed quantities in accor-

dance with definition (3.62), and its perturbation is written as Pik
1 =−U i

0vk−Uk
0 vi.

Everywhere below we omit the index 0 for the unperturbed quantities. In ad-
dition, the viscous part of the stress-energy tensor in the disc is marked with “ν”
wherever necessary: T ik

ν ≡ 2ησ ik.

4.3.1.2 Additional Relations Used to Write the Equations

The relations given below are valid up to terms of the order of ∝ δ 2, which is
sufficient for the theory of twisted discs in the leading order in the small parameter
δ . In deriving these relations, this simplification enables us to consider that in the
background solution, only Uτ and Uϕ are non-zero, while U r ∝ δ 2 and U r can be
temporarily set equal to zero.

We first note that the following relation between the components Uτ and Uϕ is
used below:

(Uτ)2 = (Uϕ)2 +1, (4.42)

which follows from the expression for the norm of the four-velocity in an orthonor-
mal basis. Constraint (4.42) is also useful in differential form:

Uτ dUτ =Uϕ dUϕ . (4.43)

3 To shorten the equations, we omit the term with the second viscosity ζ : as it can be shown using
the analysis given below, this term does not contribute to the final equations in the leading order in
the small parameters of the problem.
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Next, since the normalization of the four-velocity is also valid in the twisted disc,
and the four-velocity perturbations are small, in the linear approximation we have

(Uτ + vτ)2− (Uϕ + vϕ)2 = (Uτ)2 +2Uτ vτ − (Uϕ)2−2Uϕ vϕ = 1,

and hence, with account for (4.42), vi is ‘orthogonal’ to U i:

Uτ vτ =Uϕ vϕ . (4.44)

Finally, from the condition that σ ik is space-like, we have

σ
rτUτ = σ

rϕUϕ ,

and thus, in the basis B0 used in this section, in the flat disc model, not only T rϕ

ν ,
but also T rτ

ν is non-zero in the order of δ that is of interest to us here:

T rτ
ν =

Uϕ

Uτ
T rϕ

ν . (4.45)

Note that in basis (3.50-3.53) co-moving with the azimuthal motion, only the com-
ponent T rϕ

ν is non-zero (see (3.73)).

4.3.1.3 Equation of Free Azimuthal Motion

The quantities corresponding to the background model and entering the twist
equations (4.39) should be obtained separately from equations (4.38). For this, it
is sufficient to use the results from Chap. 3, taking only the transition from basis
(3.50-3.53) to the basis B0 into account.

Nevertheless, when deriving the twist equations, it is also necessary to use some
of equations (4.38) written exactly in the basis B0. This regards the r- and ξ -
projections of these equations in the leading order in the small parameter of disc
thickness which, as we know, describe its azimuthal rotation in the equatorial plane
of the black hole and its vertical hydrostatic equilibrium. We emphasize that these
relations are valid for both a stationary and a non-stationary accretion flow, for any
viscosity parametrization, as well as for any specific vertical and radial structure of
the flow. Only the condition δ � 1 is important.

At the first stage of deriving the twist equations we will need only the r-projection
of (4.38). Setting T ik = ρU iUk we find that T rk

;k = 0 yields

K′1
K1

(Uτ)2 +a
K3

K2
(2− rK4)UτUϕ − (rK2)

′

rK2
(Uϕ)2 = 0. (4.46)

Exactly this combination (4.46) is used in the derivation; however, it can be
checked that together with (4.42) in the approximation linear in a it gives the so-
lution

Uϕ = (rS−3)−1/2
(

1−ar−1/2
S (rS−3)−1

)
, (4.47)
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where we have switched to the Schwarzschild radial coordinate rS which is equiva-
lent to r, which we used in Chap. 3 in the expression for Uϕ

g (see formula (3.15)). It
is easy to check that Uϕ

g =Uϕ/rS, as must be the case with the transition from the
coordinate basis to B0 taken into account.

4.3.1.4 ’Gauge’ Condition of the Twisted Frame

The principal kinematic constraint for the twisted reference frame requires a con-
stant vertical position of fluid particles:

dξ

dτ
= 0, (4.48)

which is provided by fast establishment of hydrostatic equilibrium across the disc
compared to the dynamical time of the twist change, as discussed in Sect. 4.1. How-
ever, as has been already noted in Hatchett et al (1981), an important point is that
this does not mean that the projection of the four-velocity of the fluid onto eξ is
also zero, because our basis is non-coordinate and its orts are not tangent to the
coordinate lines.

By definition,

vξ =
eξ

ds
.

Using (4.28) we have:

vξ = rK2U
dτ

ds
+ rK2W

dr
ds

;

where we should substitute dτ/ds and dr/ds in this relation in the zeroth order in
β , in other words, as values corresponding to the flat disc dynamics. Expressions
for eτ , eϕ and er at β = 0 give

dτ

ds
=

1
K1

(
Uτ −ar2K3

dϕ

ds

)
,

dr
ds

=
U r

K2
,

dϕ

ds
=

Uϕ

rK2
, (4.49)

where by definition U i ≡ ei/ds. As a result, we obtain

vξ = rUτ K
K2

K1
U + rU rW, (4.50)

where

K =

(
1−ar

K3

K2

Uϕ

Uτ

)
.

In (4.50) the velocity components Uτ and U r should be taken from the correspond-
ing background solution for a flat disc.
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4.3.1.5 Explicit Form of the Set of Equations of a Twisted Disc

Now, using (4.42-4.50), we write equations (4.39) in explicit form by keeping
only the terms in the leading order in the two small parameters δ and u ≡ td/tev

4.
Here, we take into account that quantities of ‘thermal’ origin in the background
solution are small, i.e. p, e, η ∝ δ 2ρ and qξ ∝ δ 3ρ, qr,ϕ ∝ δ 4 (see Chap. 3).

We postpone discussing the effects of the fluid non-ideality for a while. Note that
this assumption not only concerns the vanishing of terms including the viscosity co-
efficient and energy flux density, or their perturbations, but also implies the absence
of contributions ∝ U r. To select the leading-order terms in the ideal fluid approxima-
tion, we start by considering second terms in the τ-, r- and ϕ-projections of (4.39).
It turns out that such terms are proportional to δβ here, and in the r-projection of
(4.39) this contribution is due to the projection of the vertical pressure gradient onto
the orbital plane of motion of matter in the twisted disc (see the analysis in Sect. 4.1,
where this quantity was denoted by (∇p)r). In addition, the τ- and ϕ-projections of
(4.39) involve terms ∝ δ−1uβ , which should be kept. On the other hand, the first
terms in the τ-, r- and ϕ-projections of (4.39) give rise to terms containing Eule-
rian velocity perturbations, vτ,r,ϕ , as well as the Eulerian rest-mass energy density
perturbation, ρ1. Hence, we conclude that

vτ,r,ϕ
∝ max{δ ,δ−1u}β , and ρ1 ∝ max{δ ,δ−1u}ρβ . (4.51)

In addition, for reasons that become clear below, we temporarily keep partial deriva-
tives of vi and ρ1 with respect to time, despite their being u−1 times smaller than the
quantities themselves. Finally, the first terms of the τ- and ϕ-projections of (4.39)
also contain terms with the combination ∂ξ ρvξ , whose amplitudes are restricted to
the order ∝ max{δ ,δ−1u}β by equation (4.50).

Now, using the result (4.51), it is easy to select the leading terms entering in the
τ-, r- and ϕ-projections of (4.39) due to fluid non-ideality. The most troublesome
here is the contribution due to the shear tensor perturbation, 2ησ ik

1 , which appears
in T ik

1 (see (4.40) and (4.41)). However, most of the terms from this contribution
contain jointly η ∝ δ 2 and vi ∝ δβ . Therefore, it is necessary to include only the
terms in which the derivative with respect to ξ (lowering the order in δ ) occurs
twice. This fact strongly reduces the number of ‘viscous’ terms to be kept. By sim-
ilar considerations, the final expressions will not contain terms with q, q1 and η1.
Finally, we stress once again that in addition to the purely ’viscous’ terms mentioned
above, the contribution due to the radial advection that appears in the background
solution with non-zero viscosity should not be forgotten. We are concerned with the
terms that may appear in the ‘non-viscous’ part of the stress-energy tensor (see the
first term in (3.60)) due to the non-zero value of U r ∝ δ 2.

Taking all of the above into account and using the relations derived in the previ-
ous three sections, we obtain the τ-, r- and ϕ-projections of (4.39) in the form

4 As we discussed above, the smallness of td/tev is necessary to ensure that the accretion flow
outside the equatorial plane of the black hole can be considered a ‘disc’. In turn, this is jointly
ensured by the smallness of both δ and td/tLT � 1 (see Sect. 4.1.1).
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where

K =

(
1−ar

K3

K2

Uϕ

Uτ

)
,

and Fτ,r,ϕ
ν is the total contribution due to non-zero viscous forces and the radial

advection of matter in the background solution ∝ U r.
Explicitly,

Fτ
ν =

Uϕ

Uτ
(∂ξ T ϕξ

ν − rW∂ξ T rϕ

ν )− r∂ξ ρUτU rW, Fr
ν = ∂ξ T rξ

ν ,

Fϕ

ν = (∂ξ T ϕξ

ν − rW∂ξ T rϕ

ν )− r∂ξ ρUϕU rW, (4.55)

where

T rξ

ν =− η

K2
(∂ξ vr +Uϕ

∂ϕW ), T ϕξ

ν =− η
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(
∂ξ vϕ −2a
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Uτ(Uϕ)2Z
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,

T rϕ

ν =−ηr
(

Uϕ

rK2

)′
. (4.56)

We note that T rξ

ν and T ϕξ

ν have the meaning of perturbations of the viscous stress
tensor. In these expressions, the terms ∝ β contributing to the shear tensor pertur-
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bations appear due to the twisted basis. Conversely, T rϕ

ν relates to the background.
Nevertheless, for the sake of brevity, we use the same notation with the index ν for
these three quantities.

Finally, we assume in (4.52-4.56) that in the relativistic coefficients K1, K2 and
K3, the argument RI is replaced by r, since R2

I = r2 + ξ 2 and accounting for the
dependence on ξ here always gives rise to a small correction ∝ δ 2 only.

It remains to write the explicit form of the ξ -projection of (4.39). Similarly, we
start with the contribution of terms in the ideal fluid approximation, and first rear-
range the first term in (4.39). The leading-order terms in δ here are, in particular,
ρvϕ and ρ1, but additionally multiplied by ξ . This means that their amplitudes are
restricted to the order max{δ 2,u}β . Furthermore, vξ now enters the term Uϕ ρ∂ϕ vξ

which also implies the raising of the order of smallness by δ compared to (4.52-
4.54) (it can be seen that in formulas (4.52) and (4.54) vξ enter in combination with
∂ξ ρ). Besides, of all terms of a ‘thermal’ origin we must now keep the term with
∂ξ p1, since it also is of the order of δ 2 due to the fact that p1 ∼ δ 2ρ1 ∝ ρδ 3β .

Turning now to the second term in the ξ -projection of (4.39), we write all terms
up to the order ∝ max{δ 2,u}β . From similar considerations, the terms due to fluid
non-ideality (including ‘advective’ terms proportional to ∝ U r) are also kept here,
with their smallness increased by the coefficient δ compared to (4.52-4.54).

We thus obtain the following equation:
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where
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, (4.58)

and T rϕ

adv = ρUϕU r. We do not provide the explicit form of T ξ ξ

ν here, as it is not
required in the final form of the twist equations.

Everywhere in (4.57-4.58), except in the second term in square brackets on the
right-hand side of (4.57), the argument RI in the relativistic coefficients K1, K2 and
K3 is replaced by r. This term is an exception since it alone is of the zeroth order
in small parameters δ and u in equation (4.57). But because we have kept the terms
∝ max{δ 2,u} in (4.57), in the term under discussion it should be necessary to take
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corrections ∝ δ 2 into account due to the dependence of the relativistic coefficients
K2 and K3 on ξ . We did not do thit for the reason discussed in the next paragraph.

4.3.2 Completing the Derivation of the Twist Equations

We have thus written the twist equations in the leading orders in the small pa-
rameters δ and u. All corrections linear in the Kerr parameter a have been taken into
account. If we temporarily set a = 0 and consider equation (4.57), we see that, on
the one hand, it contains terms proportional to the rate of change of the disc twist, U ,
and on the other hand, it has terms containing perturbations of physical quantities of
the order ∝ δ 2. Thus, we can say that a thin twisted disc evolves on long timescales
such that u ∼ δ 2, due to internal forces only. Then it becomes clear that equations
(4.52-4.54) are restricted to the order ∝ δ , and equation (4.57) is restricted to the
order ∝ δ 2.

At the same time, when the parameter a is non-zero, a ‘large’ term of the ze-
roth order in δ and ∝ aZ arises on the right-hand side of equation (4.57). This
term describes the gravitomagnetic interaction of the rotating black hole with the
tilted/twisted disc. In order that all terms in (4.57) be balanced with each other, we
must assume that a ∼ δ 2. But then it becomes clear that all additional corrections
∼ a in equations (4.52-4.54) are of the next order in δ and can be omitted. The
same applies to all terms ∝ aδ 2 in equation (4.57), including the correction ∝ δ 2

due to the dependence of the relativistic coefficients on RI in the gravitomagnetic
term itself.

In fact, this means that when considering the dynamics of a twisted thin accretion
disc near a rotating black hole, it is sufficient to use the background model, i.e. the
corresponding flat disc, in the Schwarzschild metric with a = 0. The assumption of
slow black hole rotation was required as otherwise the accretion flow (including the
non-stationary one) could not be regarded as a disc, since the vertical hydrostatic
equilibrium there would be violated (see Sect. 4.1). Of course, these conclusions
only apply to slightly tilted/twisted and geometrically thin discs with β � 1, δ � 1.

In what follows, we therefore set a = 0 in all terms except the gravitomagnetic.
This significantly simplifies further calculations required for obtaining the twist
equations in the final form. Let us first analyze equations (4.52) and (4.54). It is
convenient to consider their combinations, which will contain neither ρ̇ nor v̇ϕ .

Eliminating v̇ϕ for a = 0 we obtain the equation
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(Uτ)2 (∂ξ T ϕξ

ν − rW∂ξ T rϕ

ν ), (4.59)
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where we have omitted the term ρ̇1, which is of the next order in δ , compared to
the other terms. In the Newtonian limit, as r→ ∞, equation (4.59) reduces to the
continuity equation for perturbations.

Next, eliminating ρ̇1 for a = 05, we obtain the equation
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ν − rW∂ξ T rϕ

ν ) = 0.

(4.60)
In the Newtonian limit, (4.60) reduces to the azimuthal component of the Navier-
Stokes equation for perturbations.

Finally, (4.53) with a = 0 takes the form

K2

K1
Uτ v̇r +

Uϕ

r
∂ϕ vr−2
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K1Uϕ

vϕ +
1
ρ

∂ξ T rξ

ν =Wr
∂ξ p
ρ

. (4.61)

In the Newtonian limit, (4.61) reduces to the radial component of the Navier-Stokes
equation for perturbations.

It is important to explain why we have retained terms with v̇r and v̇ϕ in equations
(4.60) and (4.61) although they are of the next order in δ . As mentioned in Sect. 4.1,
in the Newtonian limit the epicyclic frequency becomes equal to the Keplerian cir-
cular frequency, which results in a resonance growth of the amplitude of velocity
perturbations of gas elements in the disc, under the action of the radial projection of
the vertical pressure gradient, (∇p)r, which is limited only by the viscosity. Mathe-
matically expressed, in the limit of an inviscid Keplerian disc, equation (4.60) yields,
in the leading order in the parameter u (with the term with ∝ v̇ϕ omitted), a relation
between vr and vϕ such that the sum of the second and the third terms in (4.61)
vanishes. But, as there is a term ∝ δβ in the right-hand side of (4.61), it follows that
v̇r (and hence v̇ϕ as well) acquires the first order in δ in the considered case. Ei-
ther viscosity or relativistic corrections eliminate the Keplerian resonance, and the
amplitudes of v̇r and v̇ϕ decrease again to the third order in δ .

Now, from equation (4.57) we need to derive the so-called twist equation that
plays the principal role in the theory of twisted discs. For this, we need to explic-
itly determine the value ∂ξ p/ρ , which is done in the next section. Although the
Schwarzschild approximation is sufficient, we also take linear corrections in a into
account. This is required below to obtain an additional expression for the Lense-
Thirring frequency in terms of the relativistic coefficients used in the twisted basis.

4.3.2.1 Equation of Vertical Hydrostatic Equilibrium

Let us write down the ξ -projection of (4.38) in the basis B0 to the leading order
in δ , as we did in Chap. 3, employing basis (3.50-3.53) (see equation (3.75)). Taking
into account that the four-velocity of the flow is {Uτ , 0,Uϕ , 0} in the leading order
in δ , we obtain the following equation

5 a = 0 also in the expression for T ϕξ

ν .
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where Uτ and Uϕ satisfy the normalization condition (4.42) and the geodesic equa-
tion (4.46). With this in mind, we arrive at the final form of the hydrostatic equilib-
rium equation

∂ξ p
ρ

=−ξ
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(Uϕ)2
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Uτ

Uϕ

)
, (4.63)

where the Schwarzschild profiles of Uτ and Uϕ are used in the term including pa-
rameter a.

It can be verified that with the substitution ξ → z/K2, equation (4.63) is equiva-
lent to (3.75) in a linear approximation in a. Here, we should only take into account
that rS = K2r, where rS is the Schwarzschild coordinate equivalent to the coordinate
r in (3.75).

4.3.2.2 Twist Equation

Our goal is to rewrite (4.57) in divergent form. Without accounting for the grav-
itomagnetic term, equation (4.57), in which we also set a = 0, must respect the
conservation law of the angular momentum projection of the twisted disc onto the
equatorial plane of the black hole (the conservation of the disc angular momentum
projection onto the black hole spin in our problem, linear in β , follows from equa-
tions for the background, since the corrections due to the small tilt angle are propor-
tional to ∝ 1−cosβ ∼ β 2), which reflects spherical symmetry of the Schwarzschild
metric.

It turns out that to do this it is necessary to eliminate vϕ and ρ1, on the left-hand
side of equation (4.57). Therefore, we will use equations (4.59-4.61) with v̇r = v̇ϕ =
0 for our purposes, since we will not deal with resonance combinations of vr and vϕ

that vanishes in the main order in u in the Keplerian inviscid limit (see the comment
to equations (4.60) and (4.61) above).

First, on the right-hand side of (4.59) we rewrite the term with ∂ϕW through vr

and vϕ using (4.61) and (4.63) with a = 0. In the resulting expression for ρ1, we re-
place vϕ using (4.60). Here, the derivative with respect to ϕ can be eliminated using
the harmonic dependence on ϕ (see (4.30) ). In other words, ∂ϕϕ =−1. Substituting
the obtained expressions for ρ1 and vϕ in (4.57), integrating over ξ , and perform-
ing integration by parts wherever necessary, using the fact that the corresponding
surface terms vanish as ρ → 0, we arrive at the compact equation
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where, as usual, Σ =
∫

ρ dξ is the surface density of the disc, and the bar over T rϕ in-
dicates that it is integrated over ξ . In the Appendix of Zhuravlev and Ivanov (2011),
it is shown that (4.64) can be used to obtain the angular momentum conservation
law for a twisted disc.

Equation (4.64) is a master equation governing the dynamics of twisted discs.
It is usually referred to as the “twist equation”. In Sect. 4.1 we gave a qualitative
description of the dynamics of a twisted disc splitted into rings. At the quantitative
level, this information is contained in (4.64). Let us explain the physical meaning
of each term in the twist equation. The first term on the LHS of (4.64) ∝ ∂ϕU char-
acterizes the rate of change of the horizontal component of angular momentum for
a particular ring of the twisted disc. The second term on the LHS of (4.64) rep-
resents the gravitomagnetic torque, while the combination in front of Z gives the
Lense-Thirring frequency, see (4.68) in the next paragraph. Finally, the combina-
tion ∝ ∂ϕW shows the radiative transfer of the horisontal component of the angular
momentum for a particular ring, which arises due to accretion with speed U r, as
well as due to the action of viscous forces in the plane (r,ϕ). Further, the first term
on the RHS of (4.64) provides torque due to the central gravitational force, which
emerges due to the asymmetric density distribution perpendicular to the disc equa-
torial surface. This term (along with the gravitomagnetic torque) remains non-zero
in the inviscid case. The last term on the LHS of (4.64) represents the viscous torque
acting from the adjacent rings divergent from the chosen ring. The force associated
with the latter torque is directed along the axis of rotation of the chosen ring, see
the corresponding paragraph in Sect. 4.1. With regards to the last two terms, note
that the central gravitational force is always larger than the viscous force. These
forces become comparable to each other in the most viscous discs with a viscosity
parameter α ∼ 1.

Equations (4.60), (4.61) and (4.64) represent a closed set of equations describing
the dynamics of twisted configurations provided that the corresponding model of the
background is specified. Unknown variables in this set include the velocity perturba-
tions vr and vϕ and the quantity Z characterizing the disc geometry. We emphasize
that in deriving these equations we essentially used only three main assumptions:
a� 1, δ� 1 and β� 1. This means that the equations describe the dynamics of any
geometrically thin accretion flow (disc) with any parametrization of viscosity and
any radial or vertical structure, in both the stationary and the non-stationary case,
(with non-stationary here, referring to a non-stationary background). Consequently,
the equations determine not only the dynamics of twist perturbations propagating in
a stationary flat disc, but also the dynamics of the twisted rings/tori, when evolution
of the geometry is accompanied with their expansion in the radial direction due to
turbulent viscosity, which means that the background itself is evolving.



4 Relativistic Twisted Accretion Disc 169

4.3.2.3 Once Again about the Characteristic Frequencies of the Problem

In Sect. 4.1.1, we already obtained relativistic expressions for the characteristic
frequencies of the problem. These include the circular and epicyclic frequencies
of free equatorial motion, as well as the frequency of vertical oscillations and the
precession frequency of tilted orbits. Here, we wish to obtain expressions for these
frequencies, but now in terms of the values used above to construct the theory of
twisted discs, i.e. in the basis B0. These expressions are required to write the twist
equations in a more compact form.

The circular frequency of free equatorial motion as measured by the clock of an
infinitely remote observer, which we already presented in equation (3.17), can be
obtained simply by dividing dϕ/ds by dτ/ds given in (4.49). We obtain

Ω =
K1

KK2

Uϕ

rUτ
. (4.65)

Using (4.47) and (4.42), and remembering that rS = rK2, we can check that (4.65)
coincides with (3.17) in the linear approximation in a.

We now consider small vertical deviations from the circular equatorial motion. In
Sect. 4.1.1, we discussed that the frequency of vertical oscillations as measured by
an infinitely remote observer, Ωv, is the locally measured frequency, Ωl , divided by
the t-component of the four-velocity of circular motion, U t

g. The frequency Ωl ex-
plicitly enters the equation of hydrostatic equilibrium (see equation (3.75) or equiv-
alent, equation (4.63) with the substitution ξ → z/K2). Using relations (4.49), we
express U t

g ≡ dτ/ds in terms of Uτ :

U t
g = KK−1

1 Uτ ,

whence
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KUτ

K1
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rK2
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Ω
, (4.66)

where the final expression was obtained using (4.65).
But then, from a comparison of (4.66) with (4.63), we see that

Ωv = Ω

(
1−ar

K3

K2

Uτ

Uϕ

)
, (4.67)

where the Schwarzschild profiles for Uτ and Uϕ are used in the term with the pa-
rameter a.

Then, using (4.14), we obtain the Lense-Thirring frequency

ΩLT = a
K1K3

K2
2

. (4.68)

It is sufficient for our purposes to know the epicyclic frequency in the Schwarzschild
case with a = 0. This expression can be most easily derived directly from the twist
equations, more precisely, from the part of these equations that describes the dynam-
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ics in the plane of the disc rings, i.e. from (4.60) and (4.61). Setting the ‘viscous’
terms and radial projection of the pressure gradient on the right-hand side of (4.61)
equal to zero, as well as omitting the dependence of vr and vϕ on ϕ , we obtain
equations for the Eulerian perturbations which describe free motion of gas elements
slightly deviating from circular motion. Clearly, these equations are equivalent to
(4.7-4.8) which were written in the basis (3.50-3.53). From these equations, we ob-
tain the following equation for vr:

v̈r +2
K1K′1

K2
2 (U

τ)2

(
∂rUϕ

Uϕ
+

K′1
K1

(Uτ)2

(Uϕ)2

)
vr = 0, (4.69)

where the expression before vr is equal to κ2. It can be rewritten in a more compact
form

κ
2 = 2

K′1(K1Uτ)′

K2
2Uτ(Uϕ)2 (4.70)

to ensure that it coincides with (4.11), considering that the radial Schwarzschild
coordinate rS = rK2 enters the last equation.

Finally, for convenience, we introduce the following quantity with the dimension
of frequency that appears in our problem. In the Schwarzschild case, a = 0,

Ω̃ =
K′1
K2

1
UτUϕ

=
rS−3

r2
S(rS−2)1/2 , (4.71)

which tends to the Keplerian value in the Newtonian limit.
Using (4.65), (4.70) and (4.71) allows us to write equations (4.60) and (4.61) in

a more compact form. Lense-Thirring frequency (4.68), evidently, enters the grav-
itomagnetic term in (4.64). However, we address this rewriting in the next section
when considering a specific background model.

4.3.3 Twist Equations in the Particular Case of a Stationary
Vertically Isothermal α-Disc

We now consider the form which the twist equations take in the specific back-
ground of a stationary α-disc, which was discussed in Chap. 3. This does not mean,
however, that only stationary twisted solutions are to be considered. In other words,
the equations we obtain are also applicable to arbitrary non-stationary dynamics of
the corresponding twisted disc. For example, they enable us to calculate the evolu-
tion of the shape of an (infinite) initially flat disc instantly tilted to the equatorial
plane of a rotating black hole. The initial stage of the evolution of such a disc was
qualitatively described in Sect. 4.1. In addition, these equations describe the wave-
like (in the case of a disc with sufficiently small α < δ ; see also Papaloizou and
Lin (1995)) or diffusion-like (in the case of a disc with sufficiently large α > δ ; see
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also Papaloizou and Pringle (1983)) dynamics of some twist perturbation imposed
on the disc lying initially in the equatorial plane of the black hole.

4.3.3.1 Explicit Form of the Necessary Background Profiles

The twist equations contain the quantity T̄ rϕ

ν (as well as η̄), related to the corre-
sponding flat disc model. We could obtain the explicit form of these quantities by
integrating the τ− and ϕ−projections of equations (4.38). However, it is simpler to
use the results from Chap. 3, where we have already obtained this quantity, there de-
noted by Tν (see equation (3.91) ). We should only take into account that now we are
working in another basis than that used for the flat disc, and therefore the transition
from Tν to T̄ rϕ

ν should be specified. First, using the orthogonality condition for the
shear tensor and, hence, for the viscous stress tensor, (3.67), we see that only one
component of the viscous stress tensor, T rϕ

ν

′, is non-zero in basis (3.50-3.53), as the
four-velocity there has only non-zero time components up to terms ∝ δ 2. The prime
here marks basis (3.50-3.53). Further, the (orthonormal) bases are different only in
that an observer associated with basis (3.50-3.53) moves in the azimuthal direction
with the velocity of the free equatorial circular motion, whereas the basis B0 corre-
sponds to an observer at rest. Therefore, the transformations of vectors and tensors
must be equivalent to the usual Lorentz transformations. Using Landau and Lifshitz
(2000) (see Exercise 1, Paragraph 6 therein) we see that T rϕ

ν = Uτ T rϕ

ν

′ where Uτ

is the Lorentz factor of azimuthal motion. Finally, it should be taken into account
that integration over ξ differs from that over z by the coefficient K2. As a result, we
obtain

T̄ rϕ

ν =
Uτ

K2
Tν . (4.72)

We note that it is possible to change from T rϕ

ν

′ to T rϕ

ν , using the relation (3.35), by
writing it for two bases, equating the right-hand sides and then multiplying one of
the sides of the obtained equalities by matrices inverse to the basis matrices there.
Here, we should only take into account that in the basis B0 the radial coordinate was
changed, (4.16), i.e. that rS = rK2 in the notation of this part of the chapter.

Next, for the case a = 0, which is sufficient here, it is easy to express Tν in
terms of elementary functions. Indeed, the integral in (3.91) can be used with the
substitution y≡√rS:

∫ E

r1/2
S C

drS =
∫ y2−6

y2−3
dy = y+

√
3

2
ln

y+
√

3
y−
√

3
.

For T̄ rϕ with account for (4.72) we finally obtain

T̄ rϕ =
Ṁ
2π

Uτ r−3/2 L(r)

K5/2
2 K2

1

, (4.73)
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where

L = 1−
√

6
y
−
√

3
2y

ln
(y−
√

3)(3+2
√

2)
(y+
√

3)
. (4.74)

By necessity, L = 0 at rS = 6. We note that L = Y (a = 0) where Y was defined in
(3.106).

On the other hand, the expression for σ rϕ in (3.73), in our case a = 0 in the basis
B0, can be rewritten in the form

σ
rϕ =

3
4

D

r3/2
S C

Uτ =
3
4

K2
1Uϕ

g Uτ
g Uτ =

3
4

K1

rK2
Uϕ(Uτ)2,

where, as usual, we use relations (4.49).
Then

T̄ rϕ =
3
2

η̄
K1

rK2
(Uτ)2Uϕ . (4.75)

As in Sect. 3.3.6, equating expressions (4.73) and (4.75) we obtain

η̄ =
Ṁ
3π

(
r−1/2

UτUϕ

L

K3
1 K3/2

2

)
. (4.76)

In the Newtonian limit, far away from the inner edge of the disc, equation (4.76)
gives the well-known result η̄ = Ṁ/(3π).

We assume that the kinematic viscosity is proportional to the characteristic disc
half-thickness times the sound velocity in the disc:

ν ∼ αcshp, (4.77)

where hp is the proper characteristic disc half-thickness, which in our coordinate
system is hproper = K2h and α is the Shakura parameter, which is assumed to be
constant. Since (4.63) implies that cs ∼

√
P/ρ ∼Uϕ h/r, we finally define α by the

equality
ν = αK2Uϕ h2/r. (4.78)

Using (4.76) and (4.78), we obtain the relation

Σh2 =
Ṁ

3πα

(
r1/2

Uτ(Uϕ)2
L

K3
1 K5/2

2

)
. (4.79)

To find U r in the advective term in (4.64), we use the rest-energy conservation
law in the basis B0 for the stationary disc. Again, we use result (3.87). Recalling the
transition to the isotropic radial coordinate, the relation between the coordinate and
physical velocities (3.48) and (4.49), and the difference in the definitions of Σ , we
obtain

− Ṁ
2π

= ΣK1K2
2 rU r. (4.80)
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Then U r can be derived from (4.80) and (4.79) as

U r =−3α

2
δ 2

L
K2

1Uτ(Uϕ)2√K2r. (4.81)

Finally, we need to know the profile δ (r). Note that this value is invariant under
the transition between the bases (3.50-3.53) and B0, since the change from hp to h
and from rS to r is scaled with the same coefficient K2.

In a gas-pressure-dominated disc with Thomson scattering opacity, it follows
from (3.108) with a = 0 that

δ (r) = δ∗K
1/2
1 K1/20

2 (Uτ)−9/10L1/5r1/20. (4.82)

In order to derive a simpler form of the twist equations, we need to specify the
vertical profile of the rest-energy density. Here we use it in its simplest form in an
isothermal disc:

ρ = ρc exp
(
− ξ 2

2h2

)
, (4.83)

where ρc(r) is the equatorial density.

4.3.3.2 Switching to Complex Amplitudes

In the case of an isothermal disc, the velocity perturbations vr and vϕ in the form

vϕ = ξ (A1 sinϕ +A2 cosϕ) vr = ξ (B1 sinϕ +B2 cosϕ) (4.84)

satisfy equations (4.60) and (4.61), provided that ν does not change with the height,
and that the amplitudes A1, A2, B1 and B2 are functions of r and τ . Indeed, in this
case, all ‘thermal’ terms are ∝ ξ , and the dependence on ξ with the ansatz (4.84) is
identically satisfied in the considered equations.

Let us introduce the complex amplitudes

A = A2 + iA1, B = B2 + iB1 and W =Ψ1 + iΨ2 = βeiγ (4.85)

By constructing two combinations, (4.60)+ i∂ϕ(4.60) and (4.61)+ i∂ϕ(4.61),
we see that all terms in these combinations are ∝ e−iϕ . In particular, the terms con-
taining W and ∂ϕW transforms into terms containing −iW′e−iϕ and W′e−iϕ , re-
spectively).

As a result, we obtain the following complex equations

Ȧ− (i−α)ΩA+
κ2

2Ω̃
B =−3

2
iαK1(Uτ)2Uϕ

ΩW′, (4.86)

Ḃ− (i−α)ΩB−2Ω̃A =−(i+α)Uϕ
Ω W′, (4.87)
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where we have used equation (4.78), as well as the expressions for the frequencies
(4.65), (4.70) and (4.71) obtained in Sect. 4.3.2.

In a similar way, by using (4.84) and (4.85) and constructing the combination
(4.64)+ i∂ϕ(4.64), we derive an equation for complex amplitudes. On the right-
hand side of this equation, an integration over ξ should be performed for the deriva-
tive with respect to r. For an isothermal disc with density distribution (4.83), the
equality

∫
ρξ 2dξ = Σh2 holds. Thus, the derivative with respect to r acts on terms

proportional to Σh2 or η̄ . Instead of these combinations, we substitute equations
(4.79) and (4.76) into our equation, and group common constant factors before the
derivative with respect to r. Additionally, instead of U r and T̄ rϕ we substitute ex-
pressions (4.81) and (4.73) into the left-hand side of our equation and then divide the
whole equation by Σ . The obtained equation contains Ṁ and Σ only in the combi-
nation Ṁ/Σ , which we express through δ 2 and other known quantities using (4.79).
Also using the expression for Lense-Thirring frequency (4.68), we finally arrive at
the following equation

Ẇ− iΩLT W+
3
2

αδ
2 K2

1
K2

Uϕ

(
Uτ −K1(rK2)

1/2 Uϕ

L

)
W′ =

δ 2K3
1Uϕ

2r1/2K3/2
2 L

∂

∂ r

{
r3/2K1/2

2
L

K2
1UτUϕ

( (i+α)B+αUϕ W′ )
}
. (4.88)

Equations (4.86-4.88) form a closed set of equations for the quantities A, B and
W as functions of r and τ . In the weak gravity limit they reduce to equations (30),
(31) and (33) in Demianski and Ivanov (1997).

Importantly, under the condition u≡ td/tev� 1, the derived set of equations can
be reduced to two equations for the variables B and W, since (4.86-4.87) prove to
be equivalent to a single equation (4.105): see the next section, where this issue is
considered using the language of frequencies. A derivation of (4.105) can be found
later on in Sect. 4.4.2.

4.4 Non-stationary Twist Dynamics

4.4.1 The Local Dispersion Relation

As noted in the introductory remarks to Sect. 4.3.3, equations (4.86-4.88) de-
scribe also non-stationary twist dynamics exhibited by an infinite stationary accre-
tion α-disc. Let us consider this dynamics in the example of harmonic twist pertur-
bation, which depends on τ and r as ∝ exp(−iωτ + ikr). For simplicity, we assume
that the perturbation is local, i.e. that k� 1. If so, we can neglect the radial varia-
tion of the coefficients in equations (4.86-4.88), as far as the typical spatial scale of
changes in these coefficients is much larger than the wavelength of the perturbation
∼ k−1.
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Additionally, we assume that effects of viscous damping and General Relativity
are weak, i.e. α � 1 and r−1 � 1. The latter allows to shorten calculations, while
not overlooking any of the regimes of twist dynamics. In the leading order in small
parameters we have

Ȧ− (i−α)ΩA+
Ω

2

(
1− 4

r

)
B =−3

2
iαUϕ

ΩW′, (4.89)

Ḃ− (i−α)ΩB−2Ω

(
1− 2

r

)
A =−

[
i
(

1+
V1

r

)
+α

]
Uϕ

ΩW′, (4.90)

Ẇ− iΩLT W =
δ 2r
2

[
i
(

1+
V2

r

)
B′+α(B′+Uϕ W′)

]
, (4.91)

where V1 and V2 are constants that appear in the expansion of the relativistic coef-
ficients over small r−1, which we do not need to find explicitly for our purposes.
It is implied here that all known quantities entering equations (4.89-4.91) take their
Newtonian values, thus, Ω = r−3/2, Uϕ = r−1/2, whereas τ and r are the variables
measured in absence of relativistic effects. In particular, this means that in this case
r = rS.

Changing the derivatives according to ∂/∂τ →−iω and ∂/∂ r→ ik and exclud-
ing the Fourier amplitude corresponding to A, we obtain the set of algerbaic equa-
tions[

ω
2 +2ω(1+ iα)Ω +(1+ iα)2

Ω
2−Ω

2 +2ΩpΩ
]

B̂ =[(
i
(

1+
V1

r

)
+α

)
(ω +(1+ iα)Ω)−3αΩ

]
Uϕ

ΩkŴ, (4.92)

δ 2r
2

[
i
(

1+
V2

r

)
+α

]
ikB̂ =

[
−i(ω +ΩLT )+α

δ 2r
2

Uϕ k2
]

Ŵ, (4.93)

where B̂ and Ŵ are the Fourier amplitudes of the variables B and W.
In (4.92-4.93) we used the Einstein frequency, Ωp ≡ 3Ω/r � Ω , introduced

in Sect. 4.1.1, see the expression for epicyclic frequency squared (4.11), and the
discussion in that section. Finally, we need to keep in mind that the solution we are
looking for must obey the condition ω�Ω by virtue of the smallness of u = td/tev,
see the discussion in the introduction to this chapter and the introductory remarks to
the derivation of the twist equations given on page 162.

First, let us pay attention to the terms in square brackets on the LHS of (4.92).
We find that the leading terms, both equal to Ω 2, cancel each other out, leaving a
set of only small terms. This is how the Keplerian resonance, or alternatively, the
Keplerian degeneration (i.e. the coincidence of epicyclic and rotational frequencies),
briefly discussed in the introduction to this chapter, manifests itself and require that
we retain the terms v̇r and v̇ϕ in equations (4.60-4.61), see the explanation on the
page 166. Indeed, equation (4.92) would yield an infinite B̂ for any non-zero Ŵ
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in absence of Ȧ and Ḃ, provided that α = Ωp = 0. On the other hand, if viscous
damping and/or relativistic precession is high enough, so that ω � min{αΩ ,Ωp},
we can neglect the influence of Ȧ and Ḃ, and accordingly, set ω = 0 inside the
parenthesis in question. Below we formulate a condition for when it is possible to
do, in the form of a restriction on the wavelength of the twist perturbation.

Similarly, the square brackets on the RHS of (4.93) contain terms that are small
compared to Ω . For this reason, we keep the terms inside the square brackets as
they are, and only consider the relation δ 2rUϕ = Ωh2. The two remaining square
brackets, however, both include leading terms much larger than the corrections due
to viscosity and/or deviation from Keplerian dynamics. This implies that here we
may neglect these corrections.

Finally, we return to the terms in square brackets before B̂ on the LHS of (4.92).
Regardless of the relation between ω and αΩ , or between ω and Ωp, we can always
drop the terms ω2, 2αωΩ and α2Ω 2 as lower order terms compared to ω , αΩ and
Ωp. 6

Taking all of the above into account, we arrive at the following dispersion relation

(ω + iαΩ +Ωp)[−i(ω +ΩLT )+αΩ(kh)2/2] =−iΩ 2(kh)2/4,

which immediately allows us to conclude that in order for the condition ω � Ω

to be satisfied, it is necessary to make the additional assumption that kh� 1, i.e.
that in our model, the twist perturbations must have a wavelength much larger than
the disc thickness. This, in turn, allows us to omit the term ∼ α on the LHS in the
square brackets. The dispersion relation takes the final form

(ω + iαΩ +Ωp)(ω +ΩLT ) = Ω
2(kh)2/4, (4.94)

and can be found in the Appendix to Zhuravlev et al (2014), where a general solution
is presented. Here we restrict ourselves to consider certain limiting cases.

4.4.1.1 A Newtonian Viscous Disc

In order to study the strictly Newtonian dynamics of twist perturbation, we set
ΩLT = 0 and Ωp = 0 in equation (4.94). We obtain the following solution

2
ω1,2

Ω
=−iα± (k2h2−α

2)1/2. (4.95)

In the short wavelength limit, or equivalently, in the limit of sufficiently small
viscosity, when α � kh, we arrive at the following dispersion equation

6 Retaining the term ω2 in (4.92) and considering the inviscid Newtonian limit for the set of
equations (4.92-4.93), we may obtain a cubic equation with respect to ω , and check that it always
has three real roots, one always being of the order of ∼ Ω , even for kh� 1, which violates the
restriction of slow evolution of the twist imposed in our model.
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2
ω1,2

Ω
=−iα± kh, (4.96)

which is typical for waves propagating with phase speed equal to half the sound
speed in a disc and dissipating on a characterictic timescale∼ α−1 times larger than
the Keplerian dynamical time. Since the phase speed ∼ hΩ does not depend on
k, there is no dispersion and an arbitrary twist perturbation propagates in the disc
conserving its shape. This kind of twist perturbation is also called a ‘bending wave’.

In the opposite case, when α � kh, i.e. when long wavelength perturbations
are considered or, equivalently, the disc is highly viscous, we obtain the couple of
imaginary solutions

ω1,2

Ω
=−iα, −i(kh)2/(4α). (4.97)

The meaning of the first root can be understood noting that it remains non-zero
in the limit kh→ 0, which describes the motion of fluid elements in absence of
radial projection of the vertical pressure gradient, but with account for viscosity.
In the inviscid limit fluid elements move freely, which corresponds to nothing but
epicyclic oscillations. As discussed on p. 169, see equation (4.69), epicyclic motion
is described by the equations for velocity perturbations (4.60) and (4.61), together
with the assumption that W = α = 0. The non-zero viscosity causes damping of
the epicyclic oscillations. It can be verified that in the Newtonian limit, equations
(4.89-4.90), with their RHSs set equal to zero yield the same decrement. Thus, ω

−1
1

is a damping timescale for epicyclic oscillations. Only the second root is relevant to
twist dynamics despite the fact that its absolute value is much smaller than that of
the first root.

As long as the viscosity is sufficiently high, ω � αΩ , we may set ω = 0 in the
square brackets on the LHS of equation (4.92), or, equivalently, in the first paren-
theses on the LHS of (4.94), see the comments to equations (4.92-4.93). It can be
verified that in the latter case we immediately arrive at the solution ω2 in equation
(4.97). Thus, in the limit α � kh, the terms Ȧ and Ḃ can be omitted, and twist
dynamics is controlled by Ẇ in the left part of the (twist) equation (4.91). The dis-
persion relation for ω2 has a form, commonly produced by an equation of diffusion
type. Hence, as far as α� kh any twist perturbation arising in a disc at some instant
diffuses in the disc. The corresponding diffusion coefficient is

D = Ωh2/(4α) ∝ α
−1 . (4.98)

For α� 1 the twist perturbation propagates in the disc substantially faster, than the
disc matter spirals inwards. Importantly, the diffusion coefficient depends on viscos-
ity in an unusual way, D ∝ α−1 , due to Keplerian resonance, which is the reason
why the first parentheses in (4.94) contain only the term iαΩ in the limit consid-
ered here. Physically, such a dependence is caused by the fact that the magnitudes
of the velocity perturbations induced by disc twist increase inversely proportional
to the value of the viscosity. In turn, the increase of the amplitudes of vr and vϕ en-
hances the asymmetry of the mass density distribution along the vertical direction in
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the disc and, consequently, the torque associated with the central gravitational force
acting on the disc, see the introduction to this chapter.

An analysis of the limiting cases of twist dynamics in a Newtonian viscous disc
as described here, as well as a confirmation of the conclusions with the help of
hydrodynamic simulations, was provided by Nelson and Papaloizou (1999). The
dispersion relation (4.95) can be found also in Lodato and Pringle (2007).

4.4.1.2 A formally Inviscid Weakly Relativistic Disc

Let us now consider the opposite case when viscosity is small enough for rela-
tivistic effects to become important, i.e. when Ωp� αΩ .

Setting α = 0 in equation (4.94) (assuming for simplicity that ΩLT = 0), we
arrive at the following solution

2ω1,2 =−Ωp± ((Ωkh)2 +Ω
2
p)

1/2. (4.99)

Again, in the short wavelength limit or, equivalently, in the limit of slow Einstein
precession when Ωp�Ωkh, we obtain

2ω1,2 =−Ωp±Ωkh, (4.100)

which recovers (4.96) with the correction that viscous damping is replaced by uni-
form precession.

In the case of small k or, equivalently, fast Einstein precession when Ωp�Ωkh,
we have two real solutions (cf. equation (4.97))

ω1,2 =−Ωp, (Ωkh)2/(4Ωp). (4.101)

Note that in order to change from (4.96) and (4.97) to (4.100) and (4.101), it is
sufficient to make the replacement iαΩ →Ωp.

Similar to what was found in the previous section, the first root of (4.101) is not
relevant to the dynamics of twist perturbations. Instead, it describes relativistic pre-
cession of elliptical orbits of free fluid elements, and can be obtained from equations
(4.89-4.90) for α = 0 and with the RHS set equal to zero. However, in this case the
root ω2 does not correspond to the diffusion dispersion relation, but to a wave with
dispersion, since its phase speed ∝ k . This means that a wave packet spreads as
it propagates in the disc. Additionally, in this case the speed of a wave packet is
much less than the typical sound speed in a disc. It was noted in the previous section
that the terms Ȧ and Ḃ in equations (4.89-4.90) are negligible in the diffusion limit
α� kh, and only the term Ẇ on the LHS of the twist equation (4.91) remains to be
responsible for the dynamics of the twist perturbation. Note that the same situation
occurs in the regime Ωp�Ωkh considered here.

Finally, we note that the phase speed of the twist perturbation, as well as its
dispersion rate, increases inversely proportional to Ωp. Similarly to this, the rate of
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diffusion of the twist perturbation increases inversely proportional to α in the case
of a Newtonian viscous disc.

4.4.2 Reduction of the Set of Equations for Velocity Perturbations

The review of the non-stationary dynamics of twist perturbation carried out in the
previous section makes it clear that the condition of slow evolution of the twisted
disc shape, i.e. the condition u� 1, inherent in the theory of twisted discs, is equiv-
alent to discarding the term ω2 in square brackets on the LHS of equation (4.92), see
the footnote on p. 176. Note that this remains valid without the additional simplify-
ing assumptions α � 1 and r−1� 1, used only to avoid cumbersome calculations.
At the same time, the discarding of ω2 reduces the set of twist equations with re-
spect to τ down to the second order. The question arises whether this could have
been done from the beginning when writing down the set of equations (4.86-4.88).
The discussion below suggests such a possibility.

Let us use the following combination of equations (4.86) and (4.87), which does
not include terms containing the variable A,

Ḃ− 2Ω̃

(i−α)Ω
Ȧ =[

1+
κ2

(i−α)2Ω 2

]
(i−α)ΩB−

[
(i+α)Uϕ

Ω − 3iα
i−α

K1(Uτ)2Uϕ
Ω̃

]
W′.

(4.102)

As expected (see the discussion after equations (4.60-4.61) on p. 166) ), the co-
efficient in front of B on the RHS of equation (4.102),

C ≡
[

1+
κ2

(i−α)2Ω 2

]
(i−α)Ω ,

vanishes in the limit α→ 0, r−1→ 0. At the same time, the LHS of equation (4.102)
is always small with respect to ∼ ΩB, since u� 1. For this reason, it effects the
dynamics of twist perturbation only as far as |C | �Ω . This means that the LHS of
equation (4.102) can be used only when |C | �Ω , and (4.86) has the form

−iΩA+
Ω

2
B = Ω O(max{uA,r−1B,αUϕ W′}). (4.103)

Equation (4.103) gives that in the leading order with respect to all small param-
eters appearing in it, the following equality holds

Ḃ = 2iȦ. (4.104)
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By the same reasoning, it is sufficient to take the coefficient in front of Ȧ on
the LHS of equation (4.102) in the inviscid Newtonian limit. Hence, we find that
equation (4.102) can be written in the form

2Ḃ =

[
1+

κ2

(i−α)2Ω 2

]
(i−α)ΩB−

[
(i+α)Uϕ

Ω − 3iα
i−α

K1(Uτ)2Uϕ
Ω̃

]
W′.

(4.105)
The analysis performed above allows us to conclude that equation (4.105) is

equivalent to the more general set of the two equations (4.86-4.87), provided that
u� 1 (ω � Ω ). It can be verified that equation (4.105) together with the twist
equation (4.88) reproduces the local dispersion relation (4.94). Additionally, in the
low frequency case, when ω � min{αΩ ,Ωp}, the dynamics of twist perturbation
is provided by the balance of the first and the second terms on the RHS of equation
(4.105), which implies that Ḃ = 0.

So, in fact, the reduced equation for perturbations of the velocity (4.105) and
the twist equation (4.88) together fully describe all regimes of non-stationary twist
dynamics in a geometrically thin disc with α-prescription of viscosity. Note that a
reduction of the more general equations (4.60) and (4.61) can be performed along
the same lines.

4.5 Stationary Twisted Disc

4.5.1 Main Equation and Boundary Conditions

We now consider stationary solutions to the set of equations (4.86-4.88). The
main goal of this section is to calculate the shape of a stationary twisted disc.

Expressing B using W′ from expression (4.105) for Ḃ = 0, and substituting the
result into (4.88), assuming that Ẇ = 0, we obtain the following equation

K1

r1/2
S L

d
drS

(
r3/2

S L
K1Uτ

f ∗(α,rS)
dW
drS

)
−3αUτ(1−L−1)

dW
drS

+
4ia

δ 2K3
1 r3

SUϕ
W = 0,

(4.106)
where the asterisk denotes complex conjugation and

f (α,rS) = (1+α
2−3iαK2

1 )
rS(i−α)

αrS(α +2i)−6
+α. (4.107)

We note that equation (4.106) was written after switching to the Schwarzschild
radial coordinate rS. In what follows, we wish to consider only the case a > 0, i.e.
a prograde disc. Apparently, the problem has two free parameters. The first of these
is the combination δ̃ ≡ δ∗/

√
|a|. Obviously, δ̃ ranges from 0 to ∞ and characterizes

the relative roles of the hydrodynamic and gravitomagnetic forces acting on the disc
rings. Secondly, (4.106) contains the disc viscosity parameter 0 < α < 1. Equation
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(4.106) in the strict Newtonian limit with non-zero viscosity reproduces the corre-
sponding equation (2.10) from Kumar and Pringle (1985) and, additionally, with
post-Newtonian corrections, reproduces equation (33) from Ivanov and Illarionov
(1997), which was confirmed in Zhuravlev and Ivanov (2011) (see paragraph 4.1
therein).

The coefficients of equation (4.106) have a singular point at the inner edge of the
disc at rS = r̄S≡ 6, where L vanishes. The regularity of the solution at r̄S must yield a
condition for the function W. Using this condition as the initial one, we can integrate
(4.106) from r̄S to infinity and to obtain the form of the stationary twisted disc. We
expand equation (4.106) in a power-series of small x0 = rS− r̄S� 1. In practice, to
do this, all quantities that take non-zero values at r̄S should be set exactly equal to
these values and L should be expanded to the main order in x0. From (4.74), we find

L≈ x2
0

72
, (4.108)

whence we see that another quantity in (4.106) that vanishes at the inner disc edge,
δ , can be written as

δ = δmsx2ε
0 ,

where ε is the power-law exponent L in equation (4.82). Accordingly, δms is also
given by equation (4.82), which is evaluated at r̄S and into which we now substitute
the coefficient 72−1 from (4.108) instead of L.

After that, it is easy to obtain the equation valid for x0� 1,

d
dx0

(
x2

0
dW
dx0

)
+C1x2−4ε

0 W+C2
dW
dx0

= 0, (4.109)

where

C1 =−
2i

f (α,rS)

Uτ

Uϕ

ΩLT

K3
1 rSδ 2

ms

and

C2 =−
216α

f (α,rS)

(Uτ)2

rS

are taken at r̄S. We see that for any finite viscosity the last term in (4.109) becomes
dominant sufficiently close to the disc edge. Therefore, the boundary condition can
be straightforwardly written as

dW
dx0

∣∣∣∣∣
r̄S

= 0. (4.110)

On the other hand, from (4.109) with α = 0, we obtain a simpler equation, the
solution to which is a Bessel function:

W =Cx−1/2
0 J 1

2−4ε

(z) , (4.111)
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where

z =
√

C1
x1−2ε

0
1−2ε

. (4.112)

As x0 → 0 (4.111) tends to a non-zero constant but with a zero derivative with
respect to x0. Therefore, in this case we return to condition (4.110).

Due to the linearity of the problem, it is sufficient to take an arbitrary non-zero
value of W in r̄S, to set the first derivative of W at r̄S equal to zero, and, with these
boundary conditions, integrate (4.106) to infinity. The modulus and phase of W
give the profiles β (rS) and γ(rS) for a stationary twisted disc. In what follows, we
normalize the profile β to unity at infinity.

4.5.2 A Disc with Marginally Small Viscosity

We consider a disc with very low viscosity separately. Clearly, it is possible to
treat the accretion disc analytically, formally setting α→ 0, if simultaneously Ṁ→
0. In such a disc, U r→ 0. It will, however, still have definite profiles of Σ and h.

In addition, to obtain an analytical solution, we consider the case δ̃ � 1; in other
words, we assume a sufficiently thin disc around a rapidly rotating black hole.

Setting α = 0 in (4.106) yields

d
drS

(
b

d
drS

W
)
+λW = 0, (4.113)

where

b =
r5/2

S L
K1Uτ

, λ =
24aL

δ 2K4
1Uϕ r5/2

S

.. (4.114)

The coefficients in (4.113) take real values, and therefore, there exist real solu-
tions to this equation. This means that in the absence of viscosity in a stationary
twisted disc γ = const, and may be set equal to zero by the corresponding choice of
reference frame. Therefore, the variable W is identical to the angle β in this section.

4.5.2.1 The Shape of the Disc near its Inner Edge

Earlier in this chapter, we have already presented the solution near the inner edge
of an inviscid disc (see equation (4.111) ). The constant C1 has in this case the
explicit form:

C1 =
24aUτ

r5
SK3

1Uϕ δ 2
ms
, (4.115)

for rS = r̄S.
Using the well-known approximation to the Bessel function for a small argument,

we obtain a relation between the constant C in (4.111) and the value of W at r̄S,
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W(rS)≡W0:

C = Γ

(
3−4ε

2(1−2ε)

)( √
χ

2(1−2ε)

)−1/2(1−2ε)

W0, (4.116)

where Γ (x) is the gamma-function.
In addition, we need the asymptotic to (4.111) for z� 1. Clearly, z can be large,

even for x� 1, since
√

C1 ∼ δ̃−1� 1. Hence, for z� 1 we obtain

W≈C

√
2

πxz
cos
(

z− π

2
1− ε

1−2ε

)
. (4.117)

4.5.2.2 The Shape of the Disc at Large Distances

We now consider equation (4.106) for rS� 1 and α→ 0. Importantly, we cannot
set all variables in (4.106) to their Newtonian values and make the viscosity simulta-
neously vanish. This already follows from the fact that then f (α,R)→ 1/(2α)→∞.
Physically, this reflects the fact that, as we mentioned above, in the absence of vis-
cosity in a strictly Newtonian potential, a Keplerian resonance occurs when the cir-
cular and epicyclic frequencies coincide, and perturbations in the twisted disc grow
infinitely due to the action of the radial projection of the vertical pressure gradient.
Therefore, a stationary twist is impossible in this case. Taking the next-order term
in the expansion of f (α,rS) in small r−1

S into account, we obtain

f (α,rS)≈
1

2α

(
1+ 3i

αrS

) . (4.118)

As α → 0, f (α,rS) now remains finite at any finite rS. Nevertheless, it makes the
leading contribution due to relativistic effects, and all other variables in (4.106) can
now be set equal to their Newtonian values Uτ = 1, Uϕ = r−1/2

S , L = 1 and K1 = 1.
Moreover, we neglect the weak dependence of δ on rS far from the black hole and
set δ = δ∗.

After that, by introducing the new independent variable x1 ≡ r−1/2
S � 1, we ob-

tain the equation

x1
d2

dx2
1

W−2
d

dx1
W+96δ̃

−2x4
1W = 0. (4.119)

The solution to (4.119) can again be expressed in terms of a Bessel function:

W = x3/2
1 (A1J−3/5(z1)+A2J3/5(z1)), (4.120)

where
z1 =

8
5

√
6δ̃
−1x5/2

1 , (4.121)
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A1 and A2 are constants.
When rS is large enough so that z1 � 1, the first and second terms respectively

in (4.120), multiplied by x3/2
1 , tend to a non-zero constant and to zero. This allows

us to express the constant A1 in terms of the value of W at infinity, W∞:

W∞ =

(
5

4
√

6

)3/5
δ̃ 3/5

Γ (2/5)
A1. (4.122)

In the opposite case, at z1 � 1, i.e. closer to the black hole, we obtain another
asymptotic form:

W≈
√

5δ̃

2π
√

24
r−1/8

S

[
A1 cos

(
z1 +

π

20

)
+A2 sin

(
z1−

π

20

)]
. (4.123)

4.5.2.3 A WKBJ-solution for the Disc Shape

Throughout the disc the asymptotic solutions (4.117) and (4.123) can be matched
by a WKBJ-solution to equation (4.113). Indeed, since we are considering the case
δ̃ � 1, the ratio of λ and b in (4.113), λ̃ = λ/b, is large at all rS such that z and z1
are large.

The WKBJ-solution has the form

W≈ C3

(λb)1/4 cos
(∫ rS

r̄S

√
λ̃drS +φWKBJ

)
, (4.124)

where the constants C3 and φWKBJ should be chosen so that (4.124) is smoothly
matched with formula (4.117) in the corresponding region. It can be verified that
this yields

φWKBJ =−
π

2
1− ε

1−2ε
(4.125)

and

C3 = 61/4
√

1−2ε

πK1Uτ
C, (4.126)

where we assume that K1 and Uτ are evaluated at rS = r̄S = 6 and L ≈ x2/72 near
r̄S.

Further, in the limit rS→∞ we can set λ and b before the cosine in (4.124) equal
to their Newtonian values. In addition, the integral in (4.124) can be represented as
I(rS)≡

∫ rS
r̄S

√
λ̃drS = I−∫ ∞

rS

√
λ̃drS, where I =

∫
∞

r̄S

√
λ̃drS. Taking into account that

the Newtonian value λ̃ = 24δ̃−2R−9/4, we have that
∫

∞

rS

√
λ̃drS≈ 8

√
6

5 δ̃−1r−5/4
S , and

therefore

W≈C3
δ̃ 1/2

241/4 cos

(
8
√

6
5

δ̃
−1r−5/4

S − I−φWKBJ

)
. (4.127)
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Solution (4.127) must be smoothly matched with expression (4.123) in the corre-
sponding region, which yields the values of constants A1 and A2. It can be verified
that these are

A1 =

√
2π

5
C3 cos

(
I +φWKBJ−

π

20

)/
cos

π

10
,

A2 =

√
2π

5
C3 sin

(
I +φWKBJ +

π

20

)/
cos

π

10
. (4.128)

Thus, equations (4.111), (4.124) and (4.120) together with coefficients (4.126),
(4.128) and phase (4.125), determine the shape of an inviscid stationary relativistic
twisted disc at all distances in the range from rS = r̄S to rS = ∞.

4.5.2.4 Resonance Solutions in a Low-viscosity Disc

We note that equations (4.116), (4.126), (4.128) and (4.122) provide a relation
between W0 and W∞:

W∞ =Ctot(δ̃ )W0, (4.129)

where the explicit form of Ctot(δ̃ ) follows from these formulas. In particular, as
follows from (4.122) and (4.128), Ctot(δ̃ ) ∝ cos(I +φWKBJ− π

20 ).
We hence conclude that for some discrete set of δ̃ for which cos(I + φWKBJ −

π

20 ) = 0 so W∞ = 0 despite that W0 6= 0.
From equations (4.114), it is possible to represent the integral I in the form I =

δ̃−1 Ĩ, where Ĩ does not depend on δ̃ . This allows us to write the singular values of
δ̃ explicitly:

δ̃k =
Ĩ

π

2

( 11
10 +

1−ε

1−2ε
+2k

) , (4.130)

where k is an integer number.
The values of δ̃k correspond to a balance between the external gravitomagnetic

force and the internal pressure gradient in the disc that leads to disc twist even if
the matter flowing into the disc at infinity moves in the equatorial plane of the black
hole. Note that, naturally, for these δ̃k there also exists a solution in the form of a
flat disc lying entirely in the black hole equatorial plane. This non-uniqueness of
the solution disappears with any appearance of low viscosity in the disc, for which
W∞ = 0 always implies W0 = 0. For small α� 1, the disc ‘feels’ these ‘resonance’
solutions, and its inner parts deviate significantly from the equatorial plane of the
black hole, even when the outer parts of the disc lie almost in the equatorial plane.
Figure (4.6) shows the curve corresponding to the analytical solution (4.129), as
well as several curves for a viscous twisted disc obtained by integrating the original
equation (4.106). We see that already for α = 10−3 the discussed resonances are
almost entirely suppressed.
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Fig. 4.6 Ratio of the tilt angle of the inner disc edge to the tilt at infinity, β0/β∞, as a function
of the parameter δ̃ . The solid curve shows the numerical solution to equation (4.106) with α = 0.
The dotted curve represents the analytical dependence C−1

tot (δ̃ ), where Ctot is given by equation
(4.129). The dashed, dash-dotted and dash-dot-dashed curves are obtained by numerical integration
of equation (4.106) with α = 10−4, 10−3 and 10−2, respectively.

4.5.3 Disc Behavior in the Plane of the Parameters α and δ̃

In conclusion, we present a full study of regimes of behavior of a stationary
twisted relativistic disc near a rotating black hole. It is convenient to show the results
of a numerical integration of equation (4.106) in the plane of the free parameters of
the problem, δ̃ and α . The first parameter varies in the range 10−3 < δ̃ < 10 and
the second parameter in the range 0 < α < 1. As follows from Fig. (4.7), at small
δ̃ , i.e. when the gravitomagnetic force exceeds the internal forces in a twisted disc,
it either lies in the equatorial plane of the black hole, i.e. β0/β∞→ 0, or, conversely,
the tilt of its rings strongly increases in the inner parts of the disc, with oscillations
of β (rS) along the radial coordinate. Note that for low viscosity, these oscillations
become so strong that the corresponding gradient of the tilt angle, β ′, leads to su-
personic perturbations of the velocity components, vr and vϕ , at heights of the order
of the disc thickness, ξ ∼ h. This, in turn, must lead to the generation of various
hydrodynamic instabilities and sound waves, which cause additional disc heating
(and hence also an increase in δ̃ ), as well as growth of α . These processes should
partially suppress the oscillations of β discussed above.
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Fig. 4.7 Contours of constant ratio β0/β∞ in the parameter plane (δ̃ , α). The numbers show the
value of β0/β∞ for each curve. The dashed curve in the right part of the figure separates the region
where the change in β with rS is more than 10% of β∞ (to the left) from the region where the disc
twist is insignificant, and β deviates by less than 10% from β∞ (to the right).

Disc alignment into the equatorial plane of the black hole occurs at sufficiently
high viscosity, when the condition α > δ̃ is satisfied with a large margin, and is
referred to as the Bardeen-Petterson effect (Bardeen and Petterson 1975). It is seen
from Fig. (4.7) that this effect occurs only in sufficiently viscous and thin discs.
But already for δ̃ ∼ α the ratio β0/β∞ becomes of the order of unity, which means
absence of disc alignment. At the same time, oscillations of β disappear. Figure
(4.8) shows the profiles of β (rS) when β0/β∞ = 1 for several δ̃ . We see that for
not very small δ̃ , the twisted disc has a sufficiently smooth shape, which suggests
the possibility of the existence of such configurations in nature. We note that β

behaves non-monotonically: it first decreases and then increases with the decrease
of rS. The latter can have important implications both for the disc structure itself
and for its observational manifestations. For example, the hot inner regions of such
a disc should illuminate its outer parts much stronger compared to the flat disc case.
Clearly, this is due to the disc inner parts being tilted with respect to the outer parts.

In the region where δ̃ is of the order of or greater than unity, the action of the
gravitomagnetic force becomes insignificant, and the disc is weakly twisted. In Fig.
(4.7), the area to the right of the dashed line is where β (rS) deviates from β∞ by
less than 10%. It is also worth noting that for δ̃ > 0.1 the Bardeen-Petterson effect
is completely absent for any α .
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Fig. 4.8 The dependence of β on rS along the curve in Fig. (4.7) for which β0/β∞ = 1. The
parameter δ̃ takes the values 10−3, 10−2, 10−1 and 1 for the solid, dashed, dash-dotted and dash-
dot-dashed curves, respectively.

4.6 Conclusions

We have presented a detailed technical derivation of the governing equations for
the evolution of the shape of a relativistic twisted disc, as well as for perturbations
of the velocity and density inside it. Only three simplifying assumptions have been
used: the smallness of the disc aspect ratio, δ � 1, the slowness of the black hole
rotation, a� 1, and the smallness of the tilt of the disc rings with respect to the
equatorial plane of the black hole, β � 1. This allowed us to formulate equations
(4.60), (4.61) and (4.64) for three variables describing Eulerian perturbations of the
azimuthal velocity, vr and vϕ and the geometrical form of the disc, Z. In general, the
dependence of vr and vϕ on the twisted coordinates r, ξ and τ , and the dependence
of Z on r and τ should be found. In accordance with equation (4.30), all these vari-
ables depend harmonically on the azimuthal coordinate. The governing equations
contain the profiles of the background solution, representing an accretion disc with
similar radial and vertical structure but lying in the equatorial plane of the black
hole. We note once again that not only the twisted disc but also the background
itself can be non-stationary, since when deriving the set of equations (4.60, 4.61,
4.64), only one assumption about the background, the smallness of δ � 1, was
used. Therefore, in addition, the twist equations enable us to study the evolution
of tilted/twisted gaseous tori/rings near a rotating black hole as they are spreading



4 Relativistic Twisted Accretion Disc 189

in the radial direction, in other words, as non-stationary accretion proceeds due to
turbulent viscosity.

In the particular case of a stationary, vertically isothermal background with α-
parametrization of the viscosity, the twist equations have been reduced to the simpler
equations (4.86), (4.87) and (4.88) for the complex amplitudes A and B describing
the velocity perturbations, and W describing the disc geometry, which depend only
on r and τ . Here, the solution for a flat relativistic disc, which was presented in detail
in Chap. 3, was utilized. The corresponding stationary problem can be described by
a second-order linear differential equation for W (see equation (4.106) ). An analytic
integration of this equation for a formally inviscid disc with δ̃ � 1 enabled us to find
the singular resonance solutions for a discrete set δ̃k, which in fact corresponds to
an instability in a flat non-tilted disc, where the latter can acquire a twisted shape
near the black hole, even with its outer part lying in the black hole equatorial plane.
This instability, however, rapidly disappears already for α ∼ 10−3 and for α > δ̃ ,
provided that δ̃ < 0.1, numerical calculations show the Bardeen-Petterson effect. At
the same time, already for α ∼ δ̃ , alignment of the inner parts of the disc into the
equatorial plane of the black hole does no longer occur, and for δ̃ ≥ 0.1 smooth but
non-monotonic profiles β (r) appear (see Fig. (4.8) ), which suggests their stability
under perturbations and the possibility of their realization in nature. The last effect
is confirmed by the first numerical simulations of tilted thin relativistic accretion
discs with δ ∼ α ∼ a∼ 0.1 carried out in the recent papers by Teixeira et al (2014)
and Zhuravlev et al (2014). In these papers, a comparison with the semi-analytic
model based on the solution of the set of equations (4.60, 4.61, 4.64) was also done
for a slightly tilted vertically barotropic torus.

Observational confirmation of the existence of twisted accretion discs around
rotating black holes has just started to emerge. Apparently, one of the most direct
pieces of evidence of their existence is the observation of maser sources at subpar-
sec scales in the disc around a supermassive black hole in the nucleus of NGC 4258
(Neufeld and Maloney 1995; Herrnstein et al 1996). The subsequent modeling in
Martin (2008) and Caproni et al (2007) showed that the disc twist in this case can be
due to the Bardeen-Petterson effect. In the recent paper by Wu et al (2013), obser-
vations of jets in the nucleus of NGC 4248 were used to independently estimate the
black hole Kerr parameter a∼ 0.7 and, in a similar model, to calculate the radius of
the disc alignment into the equatorial plane of the black hole in agreement with ob-
servations. Additional but more indirect arguments favoring the presence of twisted
discs in galactic nuclei were obtained, for example, in Cadez et al (2003) and Cadez
and Calvani (2005), where the observed profiles of the X-ray iron line Kα were cal-
culated for different accretion disc models. It was concluded that in many cases, the
observed line profile can be more easily explained in the model of a twisted disc
than in the model of a flat disc, with some specific radial intensity distribution. In S-
M. et al (2010), a similar modeling of hydrogen Balmer lines was performed. These
should arise due to the heating of the outer parts of a twisted disc by hard emission
from its inner parts, which have much larger tilt angles than in the case of a flat disc.
The presence of twisted discs is also suspected in binary stellar systems with black
holes. For example, this could be the case in the two microquasars, GROJ1655-40



190 Viacheslav Zhuravlev

and V4641 Sgr, in which a tilt of the jets relative to the orbital plane was discovered
(see Martin et al (2008b) and Martin et al (2008a)).

As mentioned above, equations (4.60), (4.61) and (4.64) also describe the non-
stationary dynamics of a torus tilted with respect to the equatorial plane of a black
hole. If δ > α , the action of the gravitomagnetic force must lead to solid-body
precession of the torus, since in this case the twist (also called bending) waves,
propagating at almost the speed of sound, smear out the dependence of γ on r due
to the Lense-Thirring effect. Similar non-stationary models are invoked to explain
the variability of Balmer line profiles, as well as the precession of jets in active
galactic nuclei (see, e.g., Caproni et al (2004)). In many papers, precessing tori are
used to explain low-frequency quasi-periodic oscillations in X-ray binary systems
(see, e.g., Veledina et al (2013)). Of special interest is the modeling of observational
manifestations of a tilted accretion disc around the black hole in the centre of our
Galaxy (Dexter and C. 2013).

The theory of relativistic twisted discs presented here can also be successfully
applied both to constructing self-consistent models of individual objects, and to
making further theoretical predictions regarding the dynamics of accretion flows
around rotating black holes.
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Chapter 5
Structure of Accretion Discs in Lensed QSOs

Pavel Abolmasov, Nikolay Shakura, and Anna Chashkina

Abstract As early as in 1937, Zwicky wrote about gravitational lenses acting as
‘space telescopes’, allowing the observation of faint and distant objects, the fluxes
from which may be considerably enhanced due to the lensing. It is clear today that
gravitational lensing may be helpful in performing another important task, one of
the main purposes of telescopic observations, namely, increasing spatial resolution.
The images of strongly lensed QSOs are affected by microlensing effects in the
halo of the lensing galaxy. In contrast to the classical strong lensing, these effects
are sensitive to the size and form of an object. The purpose of this chapter is to give
a general introduction to quasar microlensing and to illustrate the capabilities of
the method, with a review of the latest results in this field, concentrating especially
on the results obtained in our three recent papers.
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5.1 Introduction: Gravitational Lensing and Microlensing

5.1.1 Light Bending by a Thin Gravitational Lens

Gravitational lensing is deviation of light from a straight path when travelling
in a gravitational field. A light ray can trace very complex curves in strong gravi-
tational fields, turning by many hundreds of degrees (this takes place, for example,
in the vicinities of black holes, see 5.2.4). As a rule, however, gravitational lenses
distort the direction of light propagation and, consequently, the apparent source po-
sition, by no more than a few arcseconds or tens of arcseconds. In doing so, one
source may yield several images displaced with respect to each other. The largest
separations between images are observed when clusters and groups of galaxies act
as lenses, as in SDSS J1004+4112 and, particularly, SDSS J1029+2623 (Inada et al
2006), where the separation between the images is currently the largest observed
at approximately 22.′′5. These angular distances are quite reachable for large tele-
scopes, and the largest separations may be visible even using amateur instruments,
(20′′ is the size of the apparent disc of Mars at its closest approaches. Lensed QSOs
are, however, too faint to observe through amateur instruments), but sometimes (for
example, in the case of QSO J2237+0305) we have to work nearly at the limit of the
angular resolution for ground-based instruments (∼ 1′′).

We may talk about the following kinds of gravitational lensing:

• weak lensing, which produces a single, slightly amplified and deformed, image
of the source

• strong lensing, which forms a few resolvable images of a single object, and
• microlensing, in which images of the object cannot be resolved, providing noth-

ing else but total fluxes as the only observable characteristics.

This is an observational classification affected by the sensitivity and resolution of
the devices in use. A fairly detailed and up-to-date introduction to these three kinds
of lensing may be found in the proceedings of the 33rd Saas-Fee summer school:
Schneider (2006), Schneider (2005), Kochanek (2006), and Wambsganss (2006).
Clusters of galaxies often act as weak lenses, where the weak lensing can be used
to reconstruct the mass distribution in the cluster. There are also many examples of
strong lensing; at least a few dozens of QSOs are luckily situated behind foreground
galaxies and are strongly lensed by them. As we will see below, characteristic sep-
arations between the images may amount to several arcseconds. The stars of our
Galaxy separate images approximately by milliarcseconds, thus potentially acting
as microlenses.

The smallness of the deflection angles simplifies the general task of describing
strong lensing, and offers a possibility to write down the lens equation in an alge-
braic form. Thin lens approximation is an important simplification: the extent of
the lens along the line of sight is considered to be much smaller than the distances
between the lens, the source, and the observer. This approximation is analogous to
that used in geometric optics. The thin lens approximation is also known as the thin
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screen or ‘single-screen approximation’, referring to a flat ‘screen’ perpendicular to
the line of sight, on which all the masses affecting the propagation of light are meant
to be concentrated. Each elementary mass ∆M on the ‘screen’ changes the direction
of a light ray by some small angle towards the lens,

∆α =
4G∆M

pc2 , (5.1)

where p is the minimal distance between a passing photon and an elementary mass,

p� 2GM
c2 . The combined effect of multiple masses is a vector sum, or an integral

over all the elementary masses (see the formula 5.4 below).
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Fig. 5.1 The formation of images in the thin lens approximation. The bold lines (solid and dotted)
depict schematically the paths of photons and the thin lines connect the observer with the false
images. The dotted and solid lines correspond to two different images at the opposite sides of the
lens in the picture frame. The source position (that would be seen in the absence of the lens) is
shown in blue and the observed images are represented in teal. The lower image is upside down.
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The smallness of the lens size allows us to consider the path of light as a polyline
composed of two segments (see the diagram in Fig. 5.1). Let us designate the dis-
tance between the source and the observer as DS, the distance between the lens and
the observer as DL, and the distance between the lens and the source as DLS. Note
that on cosmological length scales, we have to use ‘angular-size distances’ (see, for
example, Zeldovich and Novikov (1975)), which differ from the comoving distance
by a factor of 1+ z (unchangeable for two static objects in the expanding universe),
where z is the redshift (the redshifts of the lens and the source will be designated
as zL and zS, respectively). Generally speaking, the distance DS to the source is not
equal to the sum of the distances DLS and DL. However, the relationship among the
three distances in a flat universe has a fairly simple form:

DS = DLS +
1+ zL

1+ zS
DL (5.2)

More general aspects concerning distances in cosmology are considered, for ex-
ample, in Hogg (1999). Note that the angular-size distance is a non-monotonous
function of redshift, having a maximum at zmax ∼ 1.6 (corresponding to a distance
of Dmax ' 1.75Gpc, see Fig. 5.2) in the standard ΛCDM cosmological model with
ΩΛ ∼ 0.7 and a modern Hubble constant of H0 = 70km s−1/Mpc. As a result, more
distant objects may have larger apparent sizes in a certain range of redshifts, being
easier to resolve than closer objects. Image scales of distant QSOs and galaxies with
redshifts of z∼ 0.5−8 vary from ∼ 5kpc/′′ at the ends of the interval to ∼ 8kpc/′′

near zmax. The two other characteristic distances, namely, the comoving (physical)
distance and the photometric distance, monotonously grow with redshift.

For most problems of gravitational lensing, the thin screen approximation is valid
with good accuracy. If we take into account that the lens is extended along the line of
sight, this yields a next-order correction in respect to deviations; hence, systematic
uncertainties connected with the limitations of thin lens approximation are of the
next order in l/D, where l is the size of the source along the line of sight and D is the
distance to it. There is only one case of astrophysical importance when deviations
from the thin lens approximation may have a noticeable value, namely, the lensing
by clusters of galaxies. All characteristic angles of the problem are small, allowing
us to sum up linearly the effects of all the gravitational forces bending the light
ray. However, the lens equation is non-linear in the general case, which leads to
multiple images and specific peculiarities in microlensing curves, giving ultimately
a possibility to examine the spatial structure of sources with the use of microlensing
(for more details, see Section 5.2.1 below).

5.1.2 Transformation of the Plane of the Sky

The mathematical apparatus for gravitational lensing is considered in a more
strict and detailed manner in the monograph by Zakharov (see Zakharov, A. F.
(1997) and references therein, and also the overview Zakharov and Sazhin (1998)).
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Fig. 5.2 Three different distances used in the standard cosmological Λ -CDM model (ΩΛ = 0.7,
Ωk = 0) as functions of redshift: the photometric distance (dotted line), the comoving distance
(dashed line) and the angular-size distance (solid line). The horizontal line corresponds to a Hubble
length of DH = c/H0 ' 4.1Gpc.

There are two aspects of the problem, which we touch upon here only briefly, not
going into details: (i) it is convenient to use the method of potentials when using
the thin lens approximation, namely, to examine the shift in position of a point-like
source as a gradient of a scalar function (potential) that is given in the plane of the
sky; (ii) the lens equation can be obtained using the minimization of a functional –
as a rule, optical length of a travel time along a null geodesic, in accordance with
Fermat’s principle (see Blandford and Narayan (1986)).

Lensing can be treated as single-valued mapping from the plane of the sky, in
which the lens is situated (or, simply, the lens plane; the other name is “the image
plane”) and where the coordinates are given by the two-dimensional vector θ , onto
the source plane (vector β ). Generally speaking, the deflection angle α̂ is also a
vector, which is calculated, as we mentioned before, as a sum (integration) of the
deviations created by the mass elements:

α̂(ξ ) = ∑
i

∆αi = ∑
i

4Gmi

c2
ξ −ξ

′∣∣ξ −ξ
′∣∣2 . (5.3)

The right-hand side contains a sum of terms similar to (5.1), which are directed
away from the mass mi in the lens plane. Let us introduce the surface density of the
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lens Σ(ξ ) at the point ξ in the form dm = Σ(ξ )dξ , where dm is the mass per unit
area in the lens plane. When changing from summation to integration, we obtain:

α̂(ξ ) =
4G
c2

∫
ξ −ξ

′∣∣ξ ′−ξ
∣∣2 Σ(ξ ′)dξ

′. (5.4)

In case of circular symmetry,

α̂(ξ ) =
4GM(ξ )

c2
ξ

ξ 2 (5.5)

where

M(ξ ) = 2π

∫
ξ

0
Σ(ξ ′)ξ ′dξ

′. (5.6)

All the angles in the problem are small, which allows us to significantly simplify
the calculations. As can be seen from Fig. 5.1, DLSα̂ = DSα implying that the rela-
tionship between the position of the source (given by vector β ) and the position of
its image θ = ξ/DL has the form

θ = β +α = β +
DLS

DS
α̂(DLθ). (5.7)

It can be seen that the position of the source β is a single-valued function of the
image position θ . The inverse mapping β → θ is not single-valued in the general
case as several images may correspond to one source. This property is valid even for
the simplest models, such as a point-like lens, and is due to the fact that the equation
is not linear with respect to θ . The dotted line in Fig. 5.1 illustrates the path of a
photon that takes part in the formation of the second image. The relationship (5.7)
is known as the lens equation if considered as an equation (or, more precisely, a
system of two equations) relative to θ .

5.1.3 Symmetric Lenses

5.1.3.1 Point-like Lenses

A lens that has a circular symmetry (Σ = Σ(|θ |) = Σ(θ)) shifts the apparent
position of a source along the straight line passing through the centre of lens sym-
metry. From this point onwards, we will refer to it simply as a symmetric lens. From
Eq. (5.5), the relationship between the apparent shift of the image relative to the
source and the deflection angle may be derived:

α(θ) =
DLS

DS
α̂(θ) =

4GM
c2

DLS

DSDL

θ

|θ |2 , (5.8)

which makes it possible to move from (5.7) to the equation for a point-like lens:
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β = θ −θ
2
Ein

θ

|θ |2 , (5.9)

where θEin is the characteristic angular radius known as the Einstein-Chwolson ra-
dius (Einstein (1936), Chwolson (1924)):

θEin =

√
4GM

c2
DLS

DSDL
. (5.10)

For a point-like lens, the physical meaning of θEin corresponds to the angular ra-
dius of the Einstein ring, a ring image of the point-like source that arises when the
observer, the lens and the source are lying on the same straight line.

Equation (5.9) has two solutions,

θ1,2 =
β

2
± 1

2

√
β 2 +4θ 2

Ein. (5.11)

The different signs of the solutions mean that the images arise on different sides
of the lens. As the source moves away from the lens, one image is approaching
the source, while the other is moving towards the lens. The violation of coaxial
alignment leads to the splitting of the ring into two distorted images, one of them
strictly within and the other strictly outside of θEin. For a point-like lens, Eq. (5.9)
has two solutions,

θ1,2 =
β

2
± 1

2

√
β 2 +4θ 2

Ein. (5.12)

These two solutions with the different signs correspond to two images arising on
different sides of the lens. As the source moves away from the lens, the position of
one image is approaching the source, meanwhile the other is approaching the lens.

Einstein rings are observed as a particular case of strong lensing by galaxies
(Kochanek et al (2001)). In a more general case, the Einstein-Chwolson radius still
remains a characteristic angular scale for splitting images in lensing.

It is useful to estimate characteristic angular scales of the effect for different
cases. In particular, for stars in the halo of our galaxy (DL ∼ DS ∼ DLS ∼ 10kpc,
M ∼M�), θE ∼ 10−3′′, for massive galaxies at cosmological distances (DL ∼DS ∼
DLS ∼ 1Gpc, M ∼ 1012M�), θE ∼ 1′′. Individual stars in remote galaxies produce
deviations on the order of microarcseconds.

5.1.3.2 Time Scales

In some cases, it is important to verify the time scale defined by the relative
tangential velocities. As a rule, the motion of the source relative to the lens is im-
portant in case of microlensing by stellar mass objects. The characteristic time scale,
namely, the time of passing θE , amounts to several years for stellar mass lenses at
cosmological distances. This time scale for stars of our galaxy is considerably less,
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about a few days. In order to estimate it correctly, we need to know the proper mo-
tions of the source and the lens, vS,L

µ :

vS,L
µ =

vS,L
t

(1+ zS,L)DS,L
, (5.13)

where vS,L
t are the tangential velocities of the source and the lens measured in a

comoving reference frame. Remember that the proper motion is an angular dis-
placement per unit time. When studying the structure of the source, it is convenient
to use the effective velocity veff, which is defined as a transverse physical distance
by which the source moves with respect to the direction towards the lens (see also
Section 5.2.1). The factor 1+ z accounts for the effects of cosmological time di-
lation. Knowing the relative proper motion vµ = veff/DS, it is easy to estimate the
time scale as t ∼ θEin/vµ :

t ∼
√

4GM
c2 ×

DLSDS

DL

1
ve f f

'

' 13.5
(

M
M�

)1/2(DLSDS

DLGpc

)1/2 1000km s−1

ve f f
.yr

(5.14)

Fig. 5.3 Lensing by a point-like mass. Left: the amplification curve for an object passing at a
distance of 0.1θEin from the lens. Right: the positions and shapes of two images of the object are
schematically shown for four selected values: u = β/θEin. The diameter of the source is 0.2θEin,
which is greater than the minimal angular distance to the lens; that is why the images coalesce into
the “Einstein ring” near the amplification maximum.
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5.1.3.3 The Isothermal Sphere

Another important particular case is the lensing by an isothermal sphere (see
the review by Kochanek (2006), as well as Kormann et al (1994), where the more
general case of an isothermal ellipsoid is considered). In this case, the surface den-
sity depends on R inversely, as Σ(R) ∝ R−1, while the mass grows linearly with the
radius (and thus is unlimited indicating that this solution, generally speaking, has
little physical meaning). The simplicity of the isothermal sphere model lies in the
fact that the dispersion of velocities σ2 is constant for virial motions. Herewith, the
expression for the mass within a sphere of radius ξ may be written as

M(ξ ) =
σ2

G
ξ . (5.15)

The above formula follows from the virial theorem as the potential energy for a test
particle with the mass m is −GMm/ξ , and the mean kinetic energy is mσ2/2.

Substituting (5.15) into the lens equation (5.9) yields one or two solutions obey-
ing the equation:

θ = β +
4σ2

c2
DLS

DS
× θ

|θ | . (5.16)

The primary image is shifted relative to the source by a fixed angle in the outward di-
rection from the lens centre, while the secondary image appears only if β < 4σ2

c2
DLS
DS

.
The isothermal sphere is the simplest model used to describe the gravitational fields
of elliptical galaxies. By order of magnitude, ∆θ ∼ 1′′, becoming greater with the
growing dispersion of velocities in the lensing galaxy. Formula (5.16) also illus-
trates the principal role of massive galaxies among gravitational lenses (Kochanek
and Keeton (1997)). The image is significantly amplified in the area (solid angle)
proportional to σ4, but only if the isothermal law is valid at distances larger than the
Einstein-Chwolson radius.

5.1.4 Asymmetric Lenses

The use of centrally symmetric models for extended lenses is almost never justi-
fied (Kochanek 2006) since small deviations from symmetry in the mass distribution
result in a qualitative change of the pattern, giving rise to various singularities and
multiplication of images, the number of which increases from two or three to five
or even more. At the same time, non-symmetric models are more complex from a
mathematical point of view, having a greater number of parameters, which hinders
their application to observational data.

In some cases, there are analytic solutions to the lens equation. A fairly complete
catalogue of models used is given by Keeton (2001). For most models, the number
of solutions amounts to three or five (depending on the source position), but it also
may be higher. As a rule, one of the images is attenuated and cannot be actually
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observed, implying that the majority of strong lenses produce two or four images
of the point-like background object. The existence and brightness of the central
attenuated image are sensitive to the form of potential near the galactic centre. This
can be demonstrated, for example, by Eq. (5.9), which has a singularity at zero for
a point-like lens that leads to the finite limit lim

θ→0
α(θ) and, consequently, to the

chance of ‘losing’ one solution to the equation.
Each of the observed images is distorted and amplified, which may be described

in terms of a linear transformation of the plane β → θ ,

Ai j =
∂βi

∂θ j
= δi j−

∂αi

∂θ j
. (5.17)

Here, i, j = 1..2, and δi j is the Kronecker delta symbol (1 for i = j, 0 for i 6= j). The
matrix Ai j contains all the information regarding the deformation of a source with
an infinitely small angular size. Traditionally, the contributions due to convergence
κ and ‘shear’ γ are separated:

A = (1−κ)
(

1 0
0 1

)
− γ

(
cos2ψ sin2ψ

sin2ψ −cos2ψ

)
. (5.18)

This decomposition exists and is unique for any symmetric matrix A; it may be
percieved as a definition of the values κ, γ , and ψ . For convergence, the following
relationship is also valid:

κ =
4πG
c2

DLSDL

DS
Σ (5.19)

The values κ, γ , and ψ have a clear physical meaning that is well illustrated by
expression (5.18): a source having circular form is mapped to an ellipse with the
semi-major and semi-minor axes of 1−κ+ γ and 1−κ− γ , respectively, turned by
the angle ψ on the celestial sphere. The physical meaning of the matrix determinant
is the ratio of the solid angles of the source and image. As the effects we are consid-
ering are expected to preserve the radiation intensity, 1/detA indicates also to what
extent the observed flux from a point-like source changes (the amplification factor).
A negative Jacobian would mean that the image is ‘turned inside out’, that is, no
combination of motions and stretches can identify such an image with the source.

detA = (1−κ)2− γ
2 (5.20)

At the points where detA = 0, generally speaking, the area of an infinitely small
object increases by an infinite factor. Since lensing does not change the intensity,
the ratio of the solid angles is equal to the ratio of the observed fluxes, which is
particularly important in case of microlensing. Hence, the amplification factor is

µ =
1

(1−κ)2− γ2 . (5.21)
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In particular, if we know the relationship α(θ) for a symmetric lens, then κ =
(θα(θ))′

2θ
, γ = θ

2

(
α(θ)

θ

)′
, and ψ = ϕ . The amplification factor for an image in this

case can be easily calculated as µ = θdθ

βdβ
. This is the stretching factor in the source

plane for a narrow ring with radius β .
Figure 5.3 shows the amplification curve for a point-like lens and the positions

of the source and the two images. The maximum amplification corresponds to the
coalescence of the two images into an Einstein ring; as the source moves away from
the lens, one image is approaching the source, while the other (weakened) one is
approaching the lens.

5.1.4.1 Caustics

For a point-like source, amplification diverges when the determinant A becomes
zero. It is obvious that an extended object will be amplified by some finite value
determined by its size and the behaviour of detA close to zero.1.

If the lens parameters are smooth functions of the coordinates, the properties of
the zeros of the determinant detA are described by the bifurcation theory (Arnold
et al 2003) for the time delay ∆ t (the time for the photon to pass along the trajectory;
see also Section 5.1.4.2), which is a smooth function of the source position on the
celestial sphere. In this case, the coordinates of the source can be treated as two
external control parameters.

A fold caustic is the simplest kind of singularity (A2) considered in catastrophe
theory, which corresponds to the occurrence or disappearance of a pair of solutions
to the lens equation for small variations in the source position. In the plane β , it is
generally a smooth curve limited by other singularities (two caustics almost always
meet in an A3-singularity called a cusp). In what follows, we will imply a fold-
type singularity when speaking about caustics. A vanishing Jacobian means that an
image of the source is infinitely stretched in some direction. This direction is per-
pendicular to the caustic. Deformation of the image in the direction of caustic can
be neglected. Therefore, in the lens equation, instead of the vectors β and θ , we
may use the scalars ∆β and ∆θ which become zero at the caustic. In these terms,
detA= d∆β/d∆θ . An asymptotic expression for amplification near the caustic may
be obtained using the expansion of the lens equation in powers of ∆θ , the distance
from the image to singularity. When detA approaches zero, the lens equation in the
direction perpendicular to the caustic may be written as ∆β =C× (∆θ)2+O(∆θ)4

, where C is some constant and ∆β is the angular distance from the object to the
caustic. This gives, in a quadratic approximation, two solutions with the amplifi-

1 For a fold caustic considered below, the amplification decreases inversely proportional to the
distance to the caustic in the image plane, µ ∝ ∆θ−1, or µ ∝ ∆β−1/2 (see later this section). The
integral of this expression over a restricted solid angle converges. For a more complex singularity
(for example, a cusp), the finiteness of amplification follows from the asymptotic behaviour of
amplification which decreases inversely proportional to the distance to this singularity (a point), or
slower (Gaudi and Petters (2002)).
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cation coefficients µ ' 1/detA ' d∆θ/d∆β ∝ ∆β−1/2. The specific form of the
coefficients in this dependence is not very important; what is essential is the asymp-
totic form of the amplification for an object that crosses the straight caustic:

µ(∆β ) = µ0 +
µ1√
∆β

. (5.22)

Here, µ0 is the amplification on the side of the singularity where the number of
images is fewer by two and µ1 is the coefficient characterizing its amplitude.

5.1.4.2 Delays

Catastrophe theory allows us to treat any bifurcation as the occurrence of a pair
of extrema for some function defined in the space of all task parameters (internal
ones, such as the coordinates of the image, and control ones, namely, the source
position). In case of lensing, the time needed to pass the trajectory characterized by
a given set of control parameters may be chosen as such a function. Herewith, the
images may correspond not only to minima and maxima of this function but also
to saddle points. This behavior may be described in terms of Fermat’s principle, as
was done, for example, in the paper by Blandford and Narayan (1986).

In connection to this, it is interesting to mention QSOs, which are variable ob-
jects with ‘red’ noise power spectra that resemble Bernoulli random walk (Webb
and Malkan (2000); Collier and Peterson (2001)). Variability has been detected on
almost all scales, from a few days to time intervals comparable to the time spans
of the observations (decades). As a rule, variability becomes uncorrelated on time
scales of tens or hundreds of days (depending on the BH mass). On shorter time
scales, the variability has an ‘infrared’ power spectrum with a slope greater than 2.

Delays are characterized by time scales of the order of
DL

c
θ

2
Ein ∼

∼ 100 M
1012M�

DLS
DS

days. For this reason, if an observing run is long enough, it is
convenient to use the variability of individual images to measure these delays with
the help of cross-correlation of individual light curves. The resulting values can be
used to verify the model of the lens and to determine the Hubble constant indepen-
dent of distance scale (Kochanek and Schechter 2004).

5.1.4.3 Optical Depth

Microlensing optical depth is an important factor that characterizes the probabil-
ity of lensing by foreground objects and specifies the general pattern of microlens-
ing. The optical depth may be defined as the convergence obtained as a result of
integration over all the screens (all the distances at which the lensing masses are
localized):

τ =
4πG
c2

1
DS

∫
DLSDLdΣ . (5.23)
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The distances DL,LS generally change along the line of sight. It is easy to verify
that τ , when defined in this manner, is calculated as ordinary optical depth with
the area within the ‘Einstein ring’ as a cross-section: σ = π(DLθEin)

2. We may say
that for τ� 1, the optical depth determines the probability for a background source
to appear within the Einstein ring of some microlens. Since the cross-section is
linear in mass, the superposition of cross-sections and optical depths will in general
be approximately linear, too. A linear approximation is sufficient to estimate the
number of microlensing events in our galaxy, where τ ∼ 10−6 (see, for example,
Hamadache et al 2006). If a galaxy with fixed parameters is moving away, its optical
depth will grow with DL, reaching a noticeable value at cosmological distances:

τgal '
4πGΣ

c2
DLSDL

DS
' 0.06

Σ

100M� pc−2
DLS

DS

DL

1Gpc
. (5.24)

This determines, among other things, the importance of taking microlensing effects
into account in case of strong lensing (see Section 5.2.1 below) and the nonlinear
character of this microlensing. If τ & 1 for some reason, chances are high that there
are several lenses that affect the position, form and amplification of the object image.
In this case, the definition of optical depth given above has no physical meaning.

There is another case when we have to be cautious in using the value of (5.23),
namely, when applying it to the optical depth of the universe as a whole when con-
sidering the lensing of sources with high zS. A direct estimate using the flat ΛCDM-
model yields:

τ(z) =
4πG
c2

∫ z

0

DLSDL

DS

dΣ

dz
dz =

=
4πG
c2

∫ z

0

DLSDL

DS
ρ(z)

dDC
L

dz
dz =

=
4πGρcrΩM

c2

∫ z

0

DLDLS

DS

dDC
L

dz
(1+ z)3dz,

(5.25)

where ρ(z) = ΩMρcr× (1+ z)3 is the local density of inhomogeneous matter, ρcr =
3c2

8πG
D−2

H is the critical density, and DH = c/H0 ' 4.1Gpc is the Hubble length. The
distances designated by C superscripts are physical distances. It can be shown that
for the flat ΛCDM model, dDC

L/dz = DH
(
ΩΛ +(1+ z)3ΩM

)−1/2, where ΩΛ ,M are
the densities of dark energy and inhomogeneous matter in terms of ρcr.

τ(z) =
3
2

ΩM

∫ z

0
(1+ z)3 DL

DH
×
(

1− 1+ zL

1+ zS

DL

DS

)
×

× dz√
ΩΛ +(1+ z)3ΩM

(5.26)

An estimate for a source at zS ∼ 10 proves to be approximately 0.1, which
is two or three orders of magnitude higher compared with calculations includ-
ing the inhomogeneous distribution of matter in galaxies and clusters of galaxies,
τ ∼ 10−3−10−4 (Hilbert et al (2007)).
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5.1.5 Microlensing

Remember that we talk about microlensing in those cases when individual im-
ages cannot be resolved and photometry is the only source of information. Total am-
plification µ becomes the most essential value. The amplification for an extended
source is calculated as

µtot =

∫
IµdΩ∫
IdΩ

, (5.27)

where the integration is performed over the solid angle in the source plane, µ =
1/detA and I is the intensity. The integral of intensity over the source plane yields
the total flux.

5.1.5.1 Amplification by a Point-like Lens — Classical Microlensing

As noted above, a point-like lens produces two images. The amplification factors
for these two images can be found as the ratios of the area elements of the image
and the source

µ1,2 =
θ1,2dθ1,2

βdβ
. (5.28)

Substitution of (5.11) into this expression yields

µ1,2 =
1
4

1± β√
β 2 +θ 2

E

,

×(β ±
√

β 2 +θ 2
E

)
(5.29)

µ1,2 =
1
2
± 1

4

√1+
4
u2 +

1√
1+ 4

u2

 , (5.30)

where u = β

θEin
. It can easily be seen that the algebraic sum of two amplifications

is equal to 1, whereas the sum of moduli gives the total amplification factor for a
point-like source placed at an angular distance β from the lens (Einstein (1936)):

µ =
u2 +2

u
√

u2 +4
. (5.31)

This amplification may be expressed as a function of time for the case when the
source and the lens have a constant relative velocity. In the general case, the object
passes at a finite angular distance β0 from the lens, which corresponds to the max-
imal amplification possible in microlensing. A time scale is specified by the time
needed to pass the Einstein-Chwolson radius: tEin = θEinDS/ve f f .
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5.1.5.2 Multiple Microlensing and Caustic Network

The point-like lens case is degenerate since the determinant detA is equal to zero
only if β = 0 (this is by the way valid for any axially symmetric lens). The character
of the transition to multiple lensing may be clearly illustrated using the following
example. Let us take a point-like lens and add a constant shear γ into the expression
for α(θ) in a manner such that

βx = θx×
(

1− θ 2
E

θ 2 − γ

)
, (5.32)

βy = θy×
(

1− θ 2
E

θ 2 + γ

)
. (5.33)

The celestial sphere image proves to be additionally stretched in the direction of the
y-axis. The combination of the lensing by the point-like mass and the artificially
introduced deformation leads to the occurrence of areas in the plane β , where there
are three or five images. The boundary between them represents on the plane a
curve that encloses an area with the size ∼ γθE . On this curve, the Jacobian of the
transformation of the plane also becomes zero: detA = 0. For a small perturbation
γ � 1, this curve is an astroid composed of four caustics and four cusps (see also
Zakharov and Sazhin (1998); Chang and Refsdal (1984)). A source located within
the astroid gives rise to two extra images, the intensities of which decrease when
moving away from the caustics, reaching a minimum at the centre of the pattern.

If a fairly wide binary acts as a lens, each of the two stars in the binary perturbs
the lensing pattern of the other. Then, γ ' θ 2

E,2/θ 2
2 , where the subscript ‘2’ indicates

that this value is defined with respect to the second lens. If the distance is estimated
as θ2 .

√
θEinθE,2, the perturbations are too large for the point-like lens model or

the perturbed ‘astroid’ model described above to be used. If there are numerous
lenses at distances of the order of θE from each other, the astroids merge to form a
single caustic network and the number of images of the source increases manyfold.

An example amplification map for multiple microlensing is shown in Fig 5.4.
The lensing was calculated for an area measuring approximately 15 microarcsec-
onds, and the Einstein-Chwolson radius for one solar mass was taken to be 2.85
microseconds, which corresponds to a characteristic distance to the lenses of the
order of 1 Gpc. Masses of 13 lenses are randomly distributed in accordance with a
power-law slope of−1.3 (which is somewhat lower than the Salpeter function slope;
see, for example, Bastian et al 2010). The intensity distribution of the object has a
characteristic angular size of approximately 0.13 microseconds, which corresponds
to the accretion disc around a black hole with the mass of 108M� at a redshift of
approximately 2 (more details, as well as the accretion disc intensity distribution,
can be found below in Section 5.2.3).
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Fig. 5.4 Left: an example of an amplification map calculated using a reverse ray tracing technique.
Right: the model light curves for an object passing along the straight lines shown on the map (left).
The amplification curves are shown as solid lines for a very small source (comparable in size
with the map resolution), dashed lines for a source with a Gaussian two-dimensional brightness
distribution, dotted lines for a source with an intensity distribution corresponding to the standard
accretion disc model. The half-light radii for both non-trivial intensity distributions are the same.

5.2 Microlensing of Accretion discs

5.2.1 Microlensing of Strongly Lensed Quasars

Microlensing of strongly lensed QSOs by stars of the lensing galaxy is an impor-
tant and nearly unique case of microlensing at high optical depth. The optical depth
of a chosen galaxy with surface density Σ does not depend on the characteristic
masses of its stars or other microlenses and can be expressed as

τgal ' 0.06
Σ∗

100M� pc−2
DLS

DS

DL

1Gpc
. (5.34)

Here, Σ∗ is the surface density of inhomogeneous matter, such as stars and compact
objects. Dark matter is treated here as a substance that, although contributing to the
mass of the galaxy, is distributed smoothly, thus having no effect on microlensing.
Nevertheless, some models (involving, for example, mirror matter that is able to
form compact configurations; see Berezhiani et al 2005) predict that particles of dark
matter can accumulate to form ‘dark stars’ or substellar mass objects. Microlensing
by hypothetical objects of the dark halo was considered in Paczynski (1986).

The characteristic size of the caustic network and, hence, the time scales of mi-
crolensing variability depend on the masses of the microlenses. The fact that the
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lensed QSOs do not demonstrate flux variations on time scales shorter than months
indicates that the lenses are stellar-mass objects, not hypothetical ‘dark stars’ with
masses three orders of magnitude lower.

The radioquasar QSO 0957+561 (Walsh et al 1979) was the first discovered
strongly lensed QSO. Today a hundred or so such objects are known and reasonably
well studied (Muñoz et al 1998), among them 10–15 radioloud, which is in agree-
ment with the proportion between radio-bright and radio-quiet quasars (∼ 7− 8%,
see Ivezić et al 2002).

Knowing the positions of the images, we may try to restore the mass distribution
in the lensing galaxy. If this proves to be too ambitious a task, we may at least im-
pose limits on it. The fluxes observed from individual images can differ noticeably
from those predicted in the strong lens model. There are two main factors leading to
occurrence of flux anomalies detected from lensed QSO images: absorption in the
lensing galaxy and lensing on smaller scales (by satellites or the spiral arms of the
lensing galaxy, or even by individual stars within this galaxy). Therefore, the main
method for studying microlensing effects is the analysis of anomalous fluxes from
individual images, especially their variability, since interstellar extinction changes
appreciably only on the larger, parsec-scale, distances. Examination of the variabil-
ity at different wavelengths may help eliminate fluctuations in interstellar extinction.
An analysis of variability of the images of SDSS 0924+0219 provides evidence for
an insignificant role of variable extinction in the formation of flux anomalies, at least
for this particular object (Floyd et al 2009).

However, QSOs are variable objects; the only chance for us to confidently distin-
guish the variability due to microlensing from the intrinsic brightness variations of
the object would be to significantly resolve uncorrelated components in the variabil-
ity of individual images. Therefore, microlensing is a disturbance when studying
intrinsic QSO variability and time delays between individual images. Vice versa,
intrinsic variability becomes a disturbance if the aim is to find and analyze the vari-
ations of flux anomalies.

QSO J2237+0305 (aka the Einstein cross, or Huchra’s lens) is an extremely
favourable object for studying microlensing effects. The object is unique, firstly,
in the sense that the lens is a nearby galaxy at z = 0.039. This redshift corresponds
to a distance of approximately 160 Mpc, whereas most strong lenses known so far
are distant objects at z∼ 0.5 and DL ∼ 1Gpc. Secondly, the lens is a low-mass spi-
ral galaxy (M ∼ 2× 1010M�, according to Ferreras et al 2005). Thirdly, the QSO
with a good accuracy (of the order of a tenth of an arcsecond) is directly behind
the galactic nucleus. Finally, the intrinsic variability of the QSO is fairly weak (of
the order of 0.m1) and the delays between images are negligible, a few hours up to
maybe days rather than dozens or hundreds of days as characteristic for most of the
lensed QSOs (Eigenbrod et al 2008).

The proximity of the lens implies, among other things, a high proper motion
(approximately inversely proportional to the distance DL), while the small mass of
the lens indicates that the Einstein radius is comparatively small and the images are
rather close to the nucleus. As a consequence, the optical depth for microlensing
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is fairly high, τ ∼ 1. The combination of these factors provides a basis for the ex-
pectation that we might detect several microlensing events per year (crossings of
caustics or other singularities). This was predicted as early as in Chang and Refsdal
(1979). Since then, the magnitude of the effect has been repeatedly estimated under
different assumptions.

Uncorrelated variability of the images of the Einstein cross was found already in
Irwin et al (1989) on the basis of a high spatial resolution photometric observational
run about a month long. Since then, the object has been observed with different
telescopes on a regular basis (this will be discussed in more detail in Section 5.3.1).

Evidently, to the familiar forms of observational information including energy
distribution in the spectrum, intrinsic variability, and polarization, we may now add
one more method, microlensing, which is sensitive to the intensity distribution on
the celestial sphere on a length scale of the Einstein-Chwolson radius (of the order
of microarcseconds and smaller). The sensitivity of the method can be clearly illus-
trated using a straight caustic model, which has been applied on repeated occasions
to describe peaks on amplification curves of lensed QSOs. The structure of the fold
caustic naturally appears when examining the vicinity of a line in the source plane,
where the Jacobian of the mapping vanishes (see Section 5.1.2 above). The amplifi-
cation factor for a point-like source is the following function of the distance between
the source and the caustic:

µ(x,y) = µ0 +µ1

√
ζ0

y
. (5.35)

Here, µ0 is the amplification factor without the caustic; µ1 ∼ 1 is the so-called caus-
tic strength, or amplitude; y is the distance between the source and the caustic; ζ0 is
some characteristic angular scale, which is close to the typical angles θE for lensing
stars. A source having a finite size R will be amplified approximately by a factor
of ∆y× µ ∼

√
R. Already this estimate alone leads us to conclude that the pattern

of a microlensing event, especially the amplitude with which the amplification µ

changes, is sensitive to the size and form of the source, hence being capable of pro-
viding additional information on the object. Information about accretion disc sizes
in QSOs is not only highly desired as a test for the standard accretion disc model
(see Section 5.2.2) and as a probe for the parameters of the central black hole (see
Section 5.2.4), but also is unlikely to be obtained in a more direct way. A distant
QSO (DS ∼ 1Gpc) observed in the optical range has an accretion disc with an an-
gular size of the order of one microarcsecond. As has been proved earlier in Sec-
tion 5.1.3.1, this value has the same order of magnitude as the Einstein-Chwolson
radius for a stellar mass lens at a distance of DL ∼ 1Gpc. Thus, microlensing effects
allow us to reach angular resolutions unprecedented in the history of observantional
astrophysics.

Since our main goal is to study the structure of emitting objects, we will use dis-
tances in the source plane (obtained when multiplying the angular distances by DS).
The distance normalization ζ0 =

√
1−κ×DSθEin is the stellar Einstein-Chwolson
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radius projected onto the source plane with allowance for strong lensing, which may
be treated as a transformation of the plane independent of microlensing. This nor-
malization was used, for example, in Witt et al (1993).

When considering an accretion disc, it is convenient to use the system of coordi-
nates α , β oriented along the semi-major and semi-minor axes of the disc projection
onto the plane of the sky (see Abolmasov and Shakura 2012b). Along with that, we
use the coordinate system x, y aligned with the caustic and rotated relative to the
coordinate system α , β by some angle ψ (see diagram in Fig. 5.5).

eff
v  (t−t )

0

y

x

α

β

ψ

Fig. 5.5 A qualitative diagram of an accretion disc lensed by a straight caustic. The grey sector
shows the amplified area behind the caustic. The side of the disc closest to the observer is outlined
in bold. The two coordinate systems used in the calculation are shown. Illustration taken from
Abolmasov and Shakura (2012b).

If there is a relative motion of an extended object and the caustic, the full ampli-
fication at time t can be calculated as (see formula (18) in Abolmasov and Shakura
2012b)

µ(t) = µ1
√

ζ0×
∫

I1(y)×∆y−1/2×Θ(∆y)dy∫
I1(y)dy

+µ0, (5.36)

where Θ(x) is the Heaviside function, Θ(x > 0) = 1 and Θ(x < 0) = 0, and

I1(y) =
∫ +∞

−∞

I(x,y)dx. (5.37)

Here, ∆y = y− veff(t − t0). The effective velocity of transverse motion (see also
Section 5.1.3.2) can be understood as the distance in the source plane per unit time
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of the observer, and is composed of the peculiar velocities of the source vS, the lens
vL, and the observer vo projected on the normal to the caustic specified by the unit
vector n:

ve f f =
vS ·n
1+ zS

− vL ·n
1+ zL

DS

DL
+

vo ·n
1+ zL

DLS

DL
. (5.38)

The motion of the lens is generally dominant since the apparent peculiar velocities
decrease as ∝ (1+ z)−1 due to time dilation. The amplitudes of the peculiar veloci-
ties (in the co-moving restframes) change only slightly with the redshift, remaining
of the order of ∼ 500km s−1 (Raychaudhury and Saslaw 1996). The overwhelming
majority of galaxies have peculiar velocities less than vmax ' 2000km s−1, which
allows us to estimate the maximal physically justified velocity veff as

veff . vmax

√
(1+ zS)−2 +(1+ zL)−2× (DS/DL)2. (5.39)

This estimate corresponds to the situation when vS is perpendicular to vL, or to an av-
erage over all the possible orientations of vS and vL. If the proper motions of the lens
and the source are directed in precisely opposite directions, the maximal effective
velocity value may grow up to veff,max ∼ vmax

(
(1+ zS)

−1 +(1+ zL)
−1× (DS/DL)

)
.

As a rule, veff ∼ vmax, the time of passage of one Einstein-Chwolson radius being
tEin ∼DSθEin/veff ∼ 30 yr. Due to the factor DS/DL, this characteristic time appears
significantly shorter (and the passages through caustics more frequent) for lenses
fairly close to observer. The Einstein cross is unique since the lens is so close to us,
its redshift (∼ 0.04) corresponding to a distance of DL ' 160Mpc. When the dis-
tance to the source is of the order of 1Gpc, we might expect only one event during
a period of several years.

5.2.2 The Standard Accretion Disc Model

The standard thin disc model was introduced in the works by Shakura (1972);
Shakura and Sunyaev (1973) and generalised to the relativistic case in Novikov
and Thorne (1973); Page and Thorne (1974); Riffert and Herold (1995). It is the
discussion about the nature of quasars that gave rise to the relativistic model. In
contrast to binaries, where generally a wide spectral range from optics to ultravio-
let is available where the nonrelativistic model is applicable within the accuracy of
∼ GMBH/Rc2 ∼ 10−3, the optical discs of active galactic nuclei (AGNs) are rela-
tively small in comparison with the inner edges of their accretion discs (no larger
than some hundreds of GMBH/c2). Therefore, QSOs and other galactic nuclei may
demonstrate relativistic effects even at optical wavelengths. However, this depends
on the mass and the accretion rate, both values for AGNs being able to change by
some orders of magnitude, within a range of millions to billions of solar masses and
from ∼ 10−2 to & 10M� yr−1, respectively.

The main assumptions of the standard accretion disc theory are:
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• axially symmetric and stationary disc
• small geometric thickness of the disc (which allows us to separate variables in the

dynamic equations, calculating independently the vertical and the radial structure
of the disc)

• all the other velocity components are small in comparison with vϕ ; radial velocity
is used only in the equation for angular momentum transfer

• the optical depth of the disc is large
• there is no substantial heat transfer in the radial direction
• the component Trϕ of the viscous stress tensor, when integrated over the vertical

coordinate z, is proportional to the pressure of the disc P integrated over z: T rϕ =
αΠ , where α is a dimensionless constant normally smaller than unity

• the boundary condition is: Trϕ = 0 at the radius of the innermost stable orbit of
the black hole.

Viscous stresses may be due to magnetic fields or turbulence. In both cases, the
constancy of α is ensured by equipartition understood as proportionality between
the energy density of the magnetic field B2/8π , or turbulent motions ρ〈v2

t 〉, and the
thermal energy density. Thus, the turbulent component of the viscous parameter can
be estimated as the mean turbulent Mach number squared, αt ∼

〈
M2

t
〉
.

The standard thin disc implies a zero boundary condition at its inner edge which
corresponds to the innermost stable orbit in case of a BH: Trϕ(Rin) = 0. A nontrivial
boundary condition at the inner edge of the disc may arise in case of accretion onto
a rapidly rotating compact object with a strong magnetic field (see Siuniaev and
Shakura 1977; it is important here that the inner radius of the disc should be greater
than the corotation radius). The applicability of this solution for accretion onto su-
permassive BHs was discussed in Agol and Krolik (2000). Large-scale magnetic
fields confined by the pressure in the disc in the so-called ‘magnetically-arrested
disc’ accretion regime, may create a torque acting on the inner edge of the disc. The
angular momentum flux produced by magnetic stresses at the inner edge of the disc
cannot significantly exceed the angular momentum flux produced by viscous forces
since the pressure of the magnetic field is restricted by the pressure in the disc.

Large optical thickness of the disc makes it possible to calculate its spectrum and
brightness distribution using the local black-body approximation. The bolometric
radiation flux is determined by the local dissipation of energy in the deep layers of
the disc

Q =
3

8π

GMṀ
R3 f (r,a) . (5.40)

Here, −1 < a < 1 is the rotation parameter of the BH, which is considered to be
negative when the angular momentum of the disc and of the BH are oppositely
directed. The small letter r, here and elsewhere, designates distances normalized
to the BH mass, r = Rc2/GM. For convenience, the accretion rate Ṁ may also be

expressed in the dimensionless form, Ṁ =
LEdd

c2 ṁ, where LEdd =
4πGM
κT c

is the

Eddington luminosity limit and κT is the opacity due to electron scattering.
The correction factor f (r,a) includes the effect of the presence of an inner edge

as well as the relativistic effects in the thin disc. In the simplest case of the standard
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Shakura-Sunyaev thin disc,

f = 1−
√

rin

r
. (5.41)

In reality, the situation is more complex even for thin disc due to the transonic nature
of the flow and to relativistic effects. More details can be found in Chapter 1 of this
book and in Section 5.2.4 below.

Here, rin = rISCO(a) is the radius of the ‘innermost stable circular orbit’, within
which stable circular orbits are not possible and the assumption of a Keplerian ve-
locity profile in the disc cannot apply; accretion of matter without angular momen-
tum transfer begins and viscous stresses vanish. The dependence rISCO(a) and the
correction factor for the relativistic case will be considered in Section 5.2.4.

Since the standard disc is optically thick, the radiation from its surface may
be considered thermal with the temperature determined by local energy release.
Equating the temperature of the local black-body radiation to the effective temper-
ature (σT 4 = Q, where σ is the Stefan-Boltzmann constant), the locally observed
monochromatic intensity at frequency ν may be written as follows:

Iν =
2hν3

c2
1

exp
(

hν

kT (r)

)
−1

. (5.42)

Here, h, c and k are the Planck constant, the speed of light and the Boltzmann con-
stant, respectively. The integrated flux from the accretion disc, which is observed
at the angle i to the normal and situated at redshift z (which corresponds to some
distance D(z)), may be determined by integration over solid angle. Let us denote the
frequency in the reference frame of the QSO as νem and the frequency received by
the observer as νobs = νem/(1+ z) (for the moment, we take into account only the
cosmological redshift; the motion of the radiating matter in the disc and strong grav-
ity effects will be considered in Section 5.2.4 below). The total observed monochro-
matic flux is

Fν =
∫

Iν dΩ =
= 2π cos i 1

(1+z)3D2

∫ +∞

Rin
Iem
ν RdR. (5.43)

Here, we pass from integration over solid angle Ω to integration over disc radius
R. Provided that the relativistic effects in the vicinity of the BH may be neglected,
an element of the solid angle is dΩ = RdRdϕ/D2, where D is the angular-size
distance (see Section 5.2.4). The observed intensity differs from the intensity in the
comoving system by a factor of (1+ z)−3 related to the cosmological expansion of
the universe. When passing from one reference frame to another, the value Iν/ν3 is
preserved (see, for example, Rybicki and Lightman (1986)).

Fν ∝ ν
1/3
obs (GM)4/3ṁ2/3 cos i× 1

D2× (1+ z)8/3 . (5.44)

The proportionality factor is provided, for example, in our paper (Abolmasov and
Shakura (2012a)). This estimate is correct far away from the limits of integration
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(kTmin� hν � kTmax). From the point of view of spectral energy distribution, this
is an intermediate asymptotic scaling Fν ∝ ν1/3. It is important to mention that
formula (5.44) may also be used to estimate BH masses. The mass is involved in
combination with the dimensionless accretion rate, Fν ∝

(
M2ṁ

)2/3.

5.2.3 Intensity Distribution

The data of QSO microlensing make it possible to examine the spatial structure
of the disc, regardless of the integrated spectrum, even on angular scales that are
currently too small for us to resolve directly. The statistics of anomalous fluxes
and the analysis of amplification curves (see Section 5.3.1) provide information
concerning mainly the half-light radii R1/2 defined as

∫ R1/2
Rin

I(R)RdR∫ +∞

Rin
I(R)RdR

=
1
2
. (5.45)

The physical meaning of this value is fairly obvious: half of the observed flux comes
from within a circle with radius R1/2. This definition is applicable to any source if
there is a clear identification of the centre. The monochromatic intensity (5.42) may
be written, with a precision up to an inessential common multiplier, as

Iν ∝
1

exp
((

R
Rd

)3/4
f−1/4

)
−1

, (5.46)

where Rd is the radial scale of the disc (see, for example, Morgan et al 2010):

Rd ' 10.2
(

λem

0.25mcm

)4/3( M
109M�

)−1/3

ṁ1/3× GM
c2 , (5.47)

and λem is the radiation wavelength in the QSO reference frame. If the effect of the
outer and inner edges of the disc is considered negligible, then R1/2 ' 2.44Rd . This
relation is fulfilled with good accuracy in the spectral range in which the intermedi-
ate asymptotics is valid. For a disc with finite outer size and nonzero inner radius,
the relationship R1/2(Rd) is weaker and saturates at long and short wavelengths.
Therefore, the half-light radius on long and short wavelengths is usually shorter and
longer, respectively, than the radius calculated using the power-law asymptotics (see
Fig. 5.6).

Not calling into question the conclusions of Mortonson et al (2005), let us note
that the accretion disc has several spatial scales, the smaller of them having an
advantage in microlensing. When crossing the straight caustic, an item the size
of ∆R will be amplified as µ ∝ (∆R)−1/2. The intensity distribution in the inner
parts of the disc, where hν � kT , is approximately described by a power law,
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Fig. 5.6 Solid curve: the half-light radius as a function of the characteristic radius Rd of a stan-
dard disc that radiates locally as a black body (the outer radius is Rout = 100). Dotted line: the
approximation R1/2 = 2.44Rd . The radii are given in arbitrary units.

Iν ' 2ν2kT/c2 ∝ R−3/4. The integration over solid angle near the caustic demon-
strates that the amplification factor variations related to the inner edge of the disc
are larger by approximately a factor of (Rd/Rin)

1/4 than the amplification variations
related to the rest of the disc. However, these become apparent only in close vicinity
to the caustic crossing events. Numerical calculations by Jaroszynski et al (1992)
show that the caustic crossings may be sensitive to the structure of the inner edge of
the disc.

The radius of the inner edge of the disc is

Rin = rin(a)
GM
c2 , (5.48)

where the normalized value rin is determined using formula (5.56) from the next sec-
tion. The shape of the lightcurve maximum is determined mainly by the parameter
X :

X = Rd
Rin

= 1
rin(a)

(
k
h

λ

1+z

)4/3(
3
2 ṁ c

GMσκT

)1/3
'

' 92
(

λ/1µ

1+z

)4/3 ( ṁ
2.5

)1/3
(

M
109M�

)−1/3
r−1

in (a).
(5.49)

We provide below convenient to use formulas that do not take into account relativis-
tic effects. However, the effects of general relativity are of the same order of magni-
tude as the effects caused by the presence of the inner edge of the disc, the former
becoming more important for a disc tilted to the line of sight. Thus, the formulas
given below (see Abolmasov and Shakura 2012b) should be used with caution.

To calculate the amplification curve, it is convenient first to integrate the bright-
ness distribution with respect to the x coordinate:
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I1(y) =
∫

I(x,y)dx ∝

∝

√
J
K y
∫ +∞

tin
dt

exp

((
y2

r2
d

J×(1+t2)

)3/8
f−1/4

)
−1

, (5.50)

where t is a dimensionless variable of integration.

K = K(i,ψ) = cos2
ψ +

sin2
ψ

cos2 i
, (5.51)

which can be viewed as a factor of disc area decrease due to inclination,

J = J(i,ψ) = sin2
ψ +

cos2 ψ

cos2 i
− sin2

ψ cos2 ψ

K(i,ψ)
tan4 i, (5.52)

f = 1−
(

1
J

r2
in

y2
1

1+ t2

)1/4

(5.53)

is the temperature correction factor we already know, and

tin =

0 if y≥ rin/
√

J√
1− 1

J

(
rin
y

)2
if y < rin/

√
J.

(5.54)

Generally speaking, the inclination and the radial scale of the disc are degenerate:
the y coordinate is included in combinations with the radial scales only as y

√
J/rd

and y
√

J/rin. Examples of calculated amplification curves for discs with different
positions of the inner edge are shown in Fig. 5.7.

5.2.4 Account for General Relativity Effects and Location of the
Inner Edge of the Disc

To find the value rISCO as a function of the rotation parameter a for a rotating
black hole, we should solve the equation (see Bardeen et al 1972):

r2−6r+8ar1/2−3a2 = 0. (5.55)

The solution to this equation may be written as follows:

rISCO = 3+Z2− sign(a)
√

(3−Z1)(3+Z1 +2Z2), (5.56)

where
Z1 = 1+(1−a2)1/3

(
(1+a)1/3 +(1−a)1/3

)
, (5.57)

and
Z2 =

√
3a2 +Z2

1 . (5.58)
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Fig. 5.7 Amplification curves for the simplified disc model (without relativistic effects). The radial
scale of the disc is Rin = 13.46GM/c2, the Kerr spin parameter ranges from −0.99 to 0.99, where
a negative sign means counterrotation. Illustration from Abolmasov and Shakura (2012b).

The correction factor f was analytically obtained for the relativistic thin accretion
disc in Page and Thorne (1974):

f = 3
2

1
x2(x3−3x+2a)×
×
(

x− x0− 3
2 a ln x

x0
−A1−A2−A3

)
.

(5.59)

Here:

A1 =
3(x1−a)2

x1(x1− x2)(x1− x3)
ln
(

x− x1

x− x1

)
, (5.60)

A2 =
3(x2−a)2

x2(x2− x3)(x2− x1)
ln
(

x− x2

x− x2

)
, (5.61)

A3 =
3(x3−a)2

x3(x3− x1)(x3− x2)
ln
(

x− x3

x− x3

)
, (5.62)
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x =
√

r (5.63)

x0 =
√

rISCO (5.64)

x1 = 2cos
(

1
3

arccosa− π

3

)
(5.65)

x2 = 2cos
(

1
3

arccosa+
π

3

)
(5.66)

x3 =−2cos
(

1
3

arccosa
)

(5.67)

These x1,2,3 values are the three solutions to the cubic equation x3− 3x+ 2a = 0
(Page and Thorne 1974) expressed in trigonometric form. An analogous notation
will be used in Section 5.3.3.2 for the position of the spherization radius.

It should be noted here that the domain of applicability of the thin disc model is
limited by several potentially important effects:

• disc inclination with respect to the BH rotation axis; it was shown that the
Bardeen-Petterson effect (Bardeen and Petterson 1975), which tends to align the
accretion disc with the equatorial plane of the BH, operates only for high viscos-
ity and small thickness of the disc (see Ivanov and Illarionov 1997; Zhuravlev and
Ivanov 2011). In the general case, however, the disc may remain inclined while
approaching the innermost stable circular orbit; or it may pass to an essentially
nonlinear mode of alignment, with formation of shockwaves having velocities of
the order of the Keplerian velocity ∼ vK sin i

• deviations from the approximation of the geometrically thin, optically thick disc;
different models predict formation of a corona or advection-dominated flows for
low accretion rates (Narayan and Yi 1995; Meyer et al 2000) and thick advective
discs for high accretion rates (Sadowski 2011); formation of essentially super-
critical flows with winds is also possible (Shakura and Sunyaev 1973; Poutanen
et al 2007)

• deviations from the model of local blackbody radiation; the use of stellar atmo-
spheres (Kolykhalov and Sunyaev 1984) cannot explain many of the observa-
tional properties of QSOs such as the almost total absence of the Lyman jump;
electron scattering and some other effects that may influence the spatial proper-
ties of QSO discs will be considered in Section 5.3.1.1.

However, even a thin disc in perfect alignment with the BH does not prevent
certain effects to dramatically alter its apparent brightness distribution. These are
bending of photon trajectories and relativistic aberration. The photon trajectories
were analytically calculated using elliptic integrals in Dexter and Agol (2009) as
a part of the geokerr software, which is available at http://www.astro.
washington.edu/users/agol/geokerr. We calculated the forms of geodesics
using geokerr, after which the Doppler factor (the ratio of the frequency in the
observer reference frame to the frequency in the reference frame comoving with the
disc) was determined from the law of conservation of energy and angular momen-
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tum of the photon along the trajectory as follows (Abolmasov and Shakura 2012b):

δ =
kt

kiui =
1

ut (1+Ω l)
. (5.68)

Here, Ω is the orbital frequency in the disc, l = asin i is the specific angular momen-
tum that is determined through the impact parameter of a given point on the celestial
sphere (see Fig. 5.5). The time component of the four-velocity is determined from
the normalization condition (gikuiuk =−1) as follows:

ut =
(
−(gtt +2gtϕ Ω +gϕϕ Ω 2)

)−1/2
=

=
(

ρ2 ∆

Σ2 − Σ2

ρ2 (Ω −ωLT )
2
)−1/2

.
(5.69)

The Keplerian frequency as measured by a distant observer is

Ω =
1

r3/2 +a
. (5.70)

The invariance of the value Iν/ν3 results in the fact that the relativistic Doppler
effect appears only in the form of radiation frequency shift:

Iν ' ∆νobsδ
3I0

ν(νem) ∝

∝

(
exp
(

1
δ
(r/rd)

3/4 f (r,a)1/4
)
−1
)−1

.
(5.71)

At large distances (r� rin and r� rd), the Doppler effect remains essential, pro-
ducing a noticeable intensity asymmetry, due to the strong (exponential) behaviour
of the Planck curve for hν � kT . If we expand the expression for monochromatic
intensity in powers of δ−1 for small r−1, we obtain δ−1 ' 1+ sin i√

r , which implies
that the intensity contrast between the approaching and the receding sides of the
disc increases with distance as follows

I+− I−

I++ I−
' (r/rd)

3/4 sin(i)√
r

∝ r1/4. (5.72)

5.2.5 Applications to Actual Lightcurves: QSO J2237+0305 and
SBS J1520+530

We have chosen the lightcurves of two objects, QSO J2237+0305, also known
as ‘the Einstein cross’, and SBS J1520+530 (Abolmasov and Shakura 2012b).
The main properties of these two objects are given in Table 5.1. Detailed stud-
ies of QSO J2237+0305 were carried out under the OGLE project (Woźniak et al
2000) targeted to search for classical microlensing events in our galaxy. Lightcurves
were obtained for all the four images observed by OGLE-II and OGLE-III; all the
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data are available at http://ogle.astrouw.edu.pl. Figure 5.8 shows the
lightcurves of the QSO J2237+0305 images based on OGLE photometric data. So
far, the search for correlated variability of individual images has not been successful,
although there are upper limits for the delays between individual images (Vakulik
et al 2006). Certain parts of the lightcurves visually resemble caustic crossings in
shape; for this reason, the straight caustic model is sometimes used to describe the
amplification curves (Bogdanov and Cherepashchuk 2004; Shalyapin et al 2002;
Gil-Merino et al 2006).

Table 5.1 The observational data for QSO J2237+0305 (A and C images) and
SBS J1520+530 used in Abolmasov and Shakura (2012b).

SBS J1520+530 QSO J2237+0305(A) QSO J2237+0305(C)
zS 1.855 1.695
zL 0.72 0.039
range of dates (V), JD-2450000 1400−1650 1200−1650
number of observations (V) – 53/52 83
range of dates (R), JD-2450000 1200−3000 1450−1510 –
number of observations (R) 253 51/49 –

Fig. 5.8 Magnitudes of the QSO J2237+0305 images according to OGLE-II,III data. The arrows
indicate two events that seem to correspond to caustic crossings. Illustrations were taken from
Woźniak et al (2000) and Udalski et al (2006).

For the other examined object, SBS J1520+530 with only two detected images,
the optical depth due to lensing is assumed to be less than that for the “Einstein
cross”, the lens being situated much further away. This object is known to be vari-
able; the time delay between the two images is measured with a good accuracy as
∆ t ' 130 days. Knowing the lag between the variability of the two components,
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we may separate the variability due to microlensing by shifting one time series by
∆ t relative to the other. After that, we may interpolate the shifted time series for A
onto a time grid of the series for B and vice versa, thus obtaining a series of B/A
flux ratios (keeping both interpolated curves to prevent information loss, although
slightly violating statistics as the data set becomes redundant; see Fig.5.9).

Fig. 5.9 Top panel: The observed flux ratios of the QSO SBS J1520+530 B and A images and
the model fitting: the simplified model without relativistic effects (dashed curve) and the Kerr
disc model (solid curve). The optimal parameters of the Kerr model: a = −0.5, i = 80◦, ψ =
330◦. Lower panel: the residuals with respect to the Kerr model. Illustration from Abolmasov and
Shakura (2012b).

The fitting was performed using the dynamical method in the space of the fol-
lowing parameters: the caustic crossing moment t0, the caustic parameters µ0,1, the
radial scale of the disc rd, the shape parameter X (see Section 5.2.3), and the ef-
fective transverse velocity veff. Since the use of the relativistic model implied the
calculation of intensity maps for a set of values of a, rd, and inclination i, a grid of
intensity maps was produced first and then a search for an optimal solution for every
map was performed. For a more detailed description of the results see Abolmasov
and Shakura (2012b), where Tables 2 and 3 provide the optimal parameter values.
The example of a fitted lightcurve near one of the ‘events’ is given in Fig. 5.10.

As a whole, the obtained solutions demonstrate that some interesting things may
be happening near the inner edge of the disc: either the inner parts are strongly in-
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Fig. 5.10 One of the amplification events detected for QSO J2237+0305 (image A). Left panel:
R-band data; right panel: V-band data. The dashed curve represents the simplified model, the
solid curve takes into account relativistic effects. The optimal model parameters are: a = 0.2,
i = 70◦, ψ = 96◦. Asterisks and grey circles correspond to different photometric methods. llus-
tration from Abolmasov and Shakura (2012b).

clined with respect to the observer or they are simply brighter and more distinct
against the background of the disc, in a greater extent than we would expect. Either
alternative may be connected with the misalignment between the BH and accre-
tion disc planes. Almost certainly, there is an appreciable angle between these two
planes. Alignment processes are still poorly understood and may involve formation
of shockwaves within inner parts of accretion discs or weakly interacting precessing
rings, which may produce effects similar to the observed. At the same time, a sat-
isfactory result is obtained for SBS J1520+530 when using a model involving two
caustics or two accretion discs (see below the final paragraph of Section 5.3.1).

5.3 The Problem of Large Radii and Observational Evidence for
Supercritical Accretion

5.3.1 Observed Estimates of Disc Sizes

As early as 1979, it was proposed to use the microlensing effects produced by
the stars of the lensing galaxy to study the spatial structure of QSO discs (Chang
and Refsdal 1979). The effect itself was discovered ten years later (Irwin et al 1989)
but proved to be difficult to use: consecutive fitting of the microlensing lightcurves
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beyond the approximation of a single straight caustic (see above) requires huge
computer power and nontrivial techniques for comparison between observational
data and simulated results. Today, the standard technique for modelling microlens-
ing processes is the construction of two-dimensional amplification maps by means
of inverse ray-tracing using random distribution of lensing stars over the celestial
sphere (Wambsganss 2006). The masses and positions of the stars are chosen ran-
domly. A light ray trajectory is constructed for every point of some field of view in
the image space (as if the ray was emitted from the eye of the observer. Hence the
name ‘inverse ray-tracing’). The Jacobian of the transformation of the plane of the
sky, detA, is then determined (see Section 5.1.4), allowing us to obtain the amplifi-
cation factor µ . The amplification map for an extended source is obtained from the
amplification map for a point-like source using two-dimensional convolution with
source intensity distribution. Subsequently, individual model lightcurves can be ob-
tained by varying the initial coordinates of the source and the components of relative
proper motion.

The distribution of amplification µ is sensitive to the size of the source (which
determines mainly the maximal possible value of µ) and to the microlensing optical
depth (Kofman et al 1997). Some other parameters of stellar population, such as
the mass distribution of stars, are also of importance. The mean stellar mass itself
does not in general affect the distribution in µ for a point-like source, but affects the
characteristic angular scale of the caustic network.

The opportunity to confidently measure QSO sizes did not appear until the be-
ginning of the new millennium. Anomalous fluxes, or more precisely, anomalies of
fluxes (the ratios of observed amplifications to those obtained in the strong lens
model) were considered in the optical and X-ray range for a sample of 10 objects in
Pooley et al (2007). The statistics of amplifications due to microlensing is directly
linked to the object size (in terms of the mean Einstein-Chwolson radius). The goal
of Pooley et al (2007) was to solve the inverse problem of reconstructing the possi-
ble mean disc sizes to reproduce the observed distribution over flux anomalies.

The results obtained by Pooley et al (2007) made it possible to derive several
nontrivial conclusions about the structure of QSO discs: (i) the size of an average
QSO in the near UV range is considerably larger than predicted by the standard mul-
ticolour thin disc theory (see Section 5.2.2 above); (ii) the sizes of X-ray-emitting
regions are much smaller and comparable to the radius of the innermost stable cir-
cular orbit.

The former conclusion received further qualitative support in Morgan et al
(2010), although the magnitude of the effect turned out to be somewhat lower: the
QSO disc sizes appeared on average approximately a factor of three larger than
predicted by theory. It is worthwhile to indicate more precisely which values were
compared with each other. Along with disc sizes estimated through microlensing
effects, I-band photometric fluxes measured by the Hubble Space Telescope were
used. The monochromatic flux at the given frequency νobs was calculated using for-
mula (5.44) for the standard disc.

For the broadband spectrum of an accretion disc, we may recalculate the flux
Fν to I-band magnitude with good accuracy. From the above expression (5.44) for
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monochromatic flux, we may derive the value M2ṁ, on which the characteristic
radius depends according to formula (5.47). In this manner, a working formula for
determining the disc size was obtained (Morgan et al 2010)

RI ' 2.83×1015 1√
cos i

D
DH
×
(

λI

1mcm

)3/2

×10−0.2(I−19)cm. (5.73)

We will use these photometric data and disc sizes in Section 5.3.3.2 below. Morgan
et al (2010) interpret the observed inconsistency as a result of strong deviations from
the standard model, potentially related to a very low actual efficiency of accretion:
the observed intensity of the disc is much smaller than expected for its estimated
angular size.

As quasar microlensing effects depend on wavelength (since the monochromatic
disc sizes depend on wavelength), it is often referred to as chromatic lensing in con-
trast to strong lensing and microlensing produced by an isolated lens, where chro-
matic effects are not important. Flux anomalies from lensed QSOs depend appre-
ciably on wavelength, although not always in the manner predicted by the standard
model (Floyd et al 2009).

Formula (5.47) implies that the approximate relationship R ∝ λ 4/3 should be
valid for the standard model in a wide range of wavelengths (mainly, from optics
to UV). As a matter of fact, the maximal slope, which is 4/3, should be observed
on a limited interval between the inner and outer edges of the disc, decreasing at
both longer and shorter wavelengths (see Fig. 5.6). Many alternative models of
disc accretion also predict power-law dependencies R(λ ), although with different
exponents; for this reason, it is convenient to introduce the structural parameter
ζ = d lnR/d lnλ . For a power-law function R(λ ), the structural parameter does not
depend on wavelength and R ∝ λ ζ .

Blackburne et al (2011) present an analysis of multi-wavelength data for 12
objects. The dependencies R(λ ) were compared with theoretical predictions (flux-
based radii were calculated using formula 5.73 for the standard disc). This work con-
firms in general the abnormally large ‘disc’ sizes for most of the sources. However,
a stunning diversity of R(λ ) curves becomes apparent. As a rule, the size of the disc
usually increases with wavelength, although this does not seem to be a general prop-
erty (for example, the disc size of WFI J2033-4723 decreases slightly with wave-
length). For more than a half of all objects, ζ ' 0; some, however, are well fitted by
the standard disc model (this concerns both the dependence slope and the normaliza-
tion). Among the latter, the most prominent is MGJ 0414+0534, the only radioloud
object in the sample, with the greatest BH mass of approximately 2×109M� (Bate
et al 2008). Figure 5.11 shows how the size changes with observed wavelength for
two QSOs with very different ζ . One of them is MGJ 0414+0534 mentioned above,
for which power-law fitting yields ζ = 1.55±0.4. The dependence R1/2(λ ) for the
second object, HE J1113-1641, is almost flat with ζ = 0.05±0.20.

The chromatic lensing data for many objects may be described in terms of the
approximate values of ζ estimated by fitting the observed R(λ ) dependence. There
is a clear correlation between ζ and BH mass (see Fig. 5.12): the dependencies R(λ )
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Fig. 5.11 The half-light radius as a function of wavelength for MGJ 0414+0534 (open circles) and
HE J1113-1641 (solid circles). The data were taken from Blackburne et al (2011). The grey solid
lines show power-law fits to the data; for comparison, the dashed red line shows a power law with
slope 4/3.

are almost flat for low masses, M . 3× 108M� (on average, however, ζ & 0); for
massive objects with M & 109M�, at least in some cases ζ & 1. The latter class of
objects includes MG J0414+0534 and the Einstein cross.

Along with the accretion disc model with scattering in an extended envelope
which will be described below in more detail, different models were proposed to
explain the abnormally large and ‘grey’ QSO sizes. Most of these models suggest
that the disc emits locally as a blackbody. It is easiest to assume that the slope
ζ < 4/3 arises simply as a consequence of another (steeper) dependence of the tem-
perature on the radius in the disc. This may be, for example, an accretion disc with
a nontrivial boundary condition at the inner edge (Agol and Krolik 2000), for which
ζ ' 8/7. Such a model was suggested in Floyd et al (2009) to explain the multi-
wavelength properties of SDSS 0924+0219. It seems that ζ < 1 for many objects,
implying that there should be some other solution. It is worthwhile to note also the
work by Yan et al (2014), in which the objects with small ζ are supposedly consid-
ered to be related to binary black holes. If it is a fairly close binary, two accretion
discs having similar sizes and luminosities might be observed. With that, the size
of the emitting area measured through microlensing will be close to the size of the
binary and will no longer depend on wavelength. If the separation between the BHs



5 Structure of Accretion Discs in Lensed QSOs 227

Fig. 5.12 The structural parameter ζ as a function of BH mass. This parameter is calculated using
the QSO sizes published in Blackburne et al (2011). The illustration was taken from Abolmasov
and Shakura (2012a).

in this binary is of the order of a few tenths of a parsec (which is comparable with
the sizes of accretion discs themselves), many properties in brightness distribution
of lensed QSOs may be qualitatively explained quite well. Particularly, the unusual
shape of the SBS J1520+530 amplification curve, which is difficult to explain in
the model with one caustic and one accretion disc, is easily explained in terms of a
binary.

5.3.1.1 Scattering in a Disc Atmosphere

Atmospheres of accretion discs are fairly hot and rarefied. For this reason, their
spectra should clearly show the effects of electron scattering. These effects are es-
pecially interesting in those cases when an appreciable part of energy dissipating in
the disc is eventually transferred into heat above the effective photosphere. If the
local viscous stresses scale with gas pressure (see Blaes et al (2011); this may be
considered as a generalization of the α law in the Shakura-Sunyaev disc model; see
Section 5.2.2 above), a translucent atmosphere becomes approximately isothermal.
To prove this, let us consider the transfer equation for the radiation energy density u
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d
dz

(
D

d
dz

u
)
= αΩ p. (5.74)

Here, D =
c

3κρ
is the radiation diffusion coefficient, Ω is the angular frequency of

rotation (dependent on radius but constant along the vertical coordinate), p is the gas
pressure, κ is the Rosseland mean opacity, and the optical depth is dτ = −κρdz.
Assume that κ = const (which is the case, in particular, if the electron scattering is
dominant). Dividing both parts of the equation by κρ , we obtain:

d2

dτ2 u =
α

κ
p
ρ

Ω . (5.75)

For gas pressure, p/ρ ∝ T . At the same time, u = aT 4, where a is a constant related
to the Stefan-Boltzmann constant. Therefore, we can write

d2u
dτ2 = Ku1/4, (5.76)

where K is a constant. It is easy to see that the solution of this equation is u ∝ τ2/3,
or T ∝ τ1/6, which is a very weak dependence. Numerical computations of accretion
disc atmospheres (see, for example, Hubeny and Hubeny 1998) also predict that the
temperature reaches a plateau in the outer layers of the atmosphere, for τ . 5.

Scattering, even coherent, leads to deviations in the radiation field from the ther-
mal law. An example demonstrating the emergence of these deviations is given
in Mihalas (1978) (Chapter 6.1). Coherent scattering may be treated as an addi-
tional source of absorption plus an additional contribution to the source function
proportional to the mean intensity. Such a description corresponds to the case of
isotropic coherent scattering, reproducing some essential features of actual hot at-
mospheres. For example, the radiation that escapes from a semi-infinite isothermal
atmosphere would have lower intensity for the same colour temperature. With that,
the monochromatic intensity would change by some factor depending on the contri-
butions of different opacity sources (see Mihalas (1978), Section 6.1):

Iν(τ = 0)' λ
1/2
ν ×Bν , (5.77)

where λν = αabs/(αabs +αsc) is the relative contribution of true absorption to opac-
ity, αsc = ρκsc is the linear coefficient of absorption due to scattering, and αabs is
the absorption coefficient due to true absorption. The observed intensity Iν is lower
than the blackbody intensity Bν of the same temperature by the the dilution factor
dν defined as Iν = dν Bν . Further on, we will consider dilution factor averaged over
frequencies (I = d ·B). Since the integrated flux that escapes from the disc should re-
main unchanged, the dilution factor d < 1 implies that the actual temperature, which
determines the shape of the spectrum and may be identified with the colour temper-
ature for the dilution factor independent of frequency, is higher than the effective
temperature by a factor of d−1/4.
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We may follow qualitatively the effects arising due to electron scattering, in-
cluding coherent scattering, using the following simplified model. Assume that the
disc radiates locally as a blackbody but its radiation is diluted; this means that the
effective temperature is not coincident with the colour temperature, and

σT 4
eff = d(r)σT 4

colour, (5.78)

where d(r) is the dilution factor. The effective temperature depends only on the
energy released in the disc, changing with radius approximately as Teff ∝ r−3/4. If
we assume that the dilution factor changes with radius also according to a power
law, d = d0 (r/r0)

γ , then both the slope of the accretion disc spectrum (defined as
Fν ∝ νβ ) and the disc brightness distribution law will change. We obtain Tcolour ∝

r−(3+γ)/4, and for the structural parameter introduced in Section 5.3.1

ζ =
4

3+ γ
. (5.79)

Integration of the diluted spectrum over frequency allows us to estimate the slope of
the integrated spectrum far away from the maximal and minimal frequencies:

β =
1− γ

3+ γ
. (5.80)

For any accretion disc that radiates locally as a black body with a power-law temper-
ature dependence on radius, the relationship β = 3−2ζ is valid. Meanwhile, for any
disc with Teff ∝ r−3/4 and a power-law dependence of the dilution factor on radius,
the above formulas yield β = ζ −1. For another interesting case of a ‘passive disc’,
in which most of the angular momentum is carried from the inner edge, whereas
the angular momentum transfer by accreting matter may be considered negligible,
Teff ∝ r−7/8 and β = 3

2 ζ −1.

5.3.2 Nonlocal Scattering

We will consider the envelope as extended and the scattering as nonlocal in those
cases when a photon is emitted and undergoes the latest scattering at essentially dif-
ferent distances from the centre of the disc (the BH). This is possible, for example,
if the disc gives rise to an optically thick wind.

An extended scattering atmosphere around an accretion disc does not affect sig-
nificantly its spectrum as long as the atmosphere remains optically thin with regard
to true absorption and comptonization effects are not too strong. Due to geometrical
reasons, only a small part of all the photons emitted by the disc and scattered in an
extended atmosphere returns back. For this reason, the above effects leading to an
increase in the colour temperature are not important. On the other hand, multiple
scattering in an extended envelope totally changes the spatial properties of the ob-
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Fig. 5.13 Structural parameter ζ and spectral slope β for the local blackbody models (solid line)
and for the models with diluted blackbody radiation (dotted lines) with a fixed effective temperature
distribution in the disc Teff ∝ r−3/4.

ject, whose apparent size is now determined by the size of the photosphere rather
than the disc. The object will have similar intensity distributions at all the wave-
lengths if the opacity does not depend on wavelength. The radiation will always be
appreciably diluted, with the apparent size of the object larger than the ‘blackbody’
radius of the disc.

Thus, the use of a scattering envelope allows us to solve two problems, namely,
to explain large apparent QSO radii and weak dependencies of these radii on wave-
length. Three essentially different models of such an envelope can be proposed: (i)
a static corona consisting of gas with virial temperature, (ii) gravitationally unbound
outflow from the accretion disc, and (iii) a gravitationally bound inflow feeding the
accretion disc, which we will consider later in Section 5.3.4. Since we deal with
bright objects characterized by high radiation density near the disc, there is a prob-
lem of Compton cooling in the first model (Pietrini and Krolik 1995). Moreover,
there are serious reasons to suggest that intense accretion is accompanied by winds
and ejections, the optical depth of which due to scattering may be greater than unity.
For simplicity, let us consider a model of a spherically symmetric stationary wind
(see also Abolmasov and Shakura 2012a).

For constant wind velocity vw and a total mass loss rate through the wind Ṁw,
the wind density changes as follows:

ρ =
Ṁw

4πR2vw
. (5.81)
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The radial optical depth is obtained as an integral of opacity times density κρ over
the line of sight from the observer to a given distance R:

τ(R) =
∫ +∞

R
κρ(R)dR =

κṀw

4πvwR
. (5.82)

The size of the photosphere can be found as the radius where τ = 1

R1 = R(τ = 1) =
fwκṀ
4πvw

, (5.83)

where fw . 1 is the fraction of accreting matter ejected from the disc. More de-
tailed calculations indicate that the brightness distribution in the atmosphere with
this density profile has an optically thick core and power-law optically thin wings,
the resulting half-light radius being approximately R1/2 ' 1.06R1.

5.3.2.1 Radiation Transfer in an Extended Atmosphere

An optically thick wind forms an envelope with density decreasing according to
the power law ρ ∝ R−2. In the general case, the radiation transfer in the atmosphere
of this disc is described by the following equation (see Mihalas (1978), Chapter 7.6,
the case of a ‘grey extended atmosphere’):

χ
∂

∂R
(I)+

1−χ2

R
∂

∂ χ
(I) =−κρ(R)(S− I), (5.84)

Here, I = I(R,χ) is the monochromatic intensity, χ = cosθ is the cosine of the angle
θ between the radiation propagation direction and the radius vector, and S = S(R)
is the source function. Since we consider isotropic scattering, the source function
can be equated to the intensity J averaged over angles. As a simple approximation
to describe the intensity distribution over angles, the method of moments is often
used, in which the dependence of intensity on the angle θ is parametrized by three
(or more) moments:

J =
1
2

∫ +1

−1
Idχ (5.85)

is the zeroth moment having the physical meaning of intensity averaged over all
directions. Note that dχ = d cosθ = sinθdθ .

H =
1
2

∫ +1

−1
Iχdχ (5.86)

is the first moment having a physical meaning related to the radiative flux of energy
(up to a factor of 4π).

K =
1
2

∫ +1

−1
Iχ

2dχ (5.87)
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is the second moment, related to radiation pressure. The moments of orders higher
than two are considered equal to zero. Moreover, it is convenient to make use of
the so called Eddington approximation, in which K = f J. This proportionality is
present, for example, in an isotropic radiation field where f = 1/3, and also in ra-
diation field formed by a point-like source, where f = 1. By fixing f we can, first,
integrate Eq. (5.84) over χ . The second of the two independent equations of radia-
tive transfer is obtained by multiplying (5.84) by χ and then integrating over χ . This
yields a closed system of equations in the Eddington approximation:{ 1

R2
d

dR

(
R2H

)
= 0

d
dR ( f J)+ 3 f−1

R J =−κρH
(5.88)

It can easily be seen that the system of equations can be essentially simplified both
for f = 1/3 and for f = 1. The first approximation works well at large optical depths
(deep in the envelope), the second applies at small optical depths (where radiation
propagates essentially radially). In the first case, the mean intensity J changes as
J ∝ C1R−3. In the second case, J ∝ C2R−2× (1+τ), where C1,2 are some constants.
The assumption C1 =C2 = H(τ = 1) might satisfy both asymptotics. However, the
total flux cannot be kept constant in this case (the first equation (5.88) is not fulfilled
any more); for this reason, we suggest the following modified law for the source
function:

S(r) = H0r−2×
(

1+d× r−1/2 + r−1
)
, (5.89)

where r =R/R1 = 1/τ and d is a free parameter. If we know how the source function
depends on the (radial) optical depth τ , we can calculate the intensity as a function
of the impact parameter P:

I = κT

∫ +∞

−∞

S
(√

P2 + l2
)

e−τl(P,l)ρ

(√
P2 + l2

)
dl, (5.90)

where κT is the opacity due to scattering and τl is the optical depth along the line of
sight,

τl = κT
∫ l
−∞

ρ

(√
P2 + l2

)
dl =

= R1
P

(
arctg l

P +π/2
)
.

(5.91)

Substituting the expression for the source function, we can express the observed
intensity distribution as

I(p) = H0×
(
u2(p)+u3(p)+d×u5/2(p)

)
, (5.92)

where x = l/R1 and p = P/R1 and

uk(p) = p−(k+1)
∫

π

0
e−θ/p sink

θdθ . (5.93)

The parameter d is chosen so that the solution should reproduce the total luminosity
2π
∫ +∞

0 I(p)pd p = 4πH0. Numerical estimates yield d '−0.097.
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Fig. 5.14 Left: diagram illustrating the calculation of the intensity distribution in Section 5.3.2.1.
Here, P is the impact parameter, l is the variable of integration. Right: the intensity distribution for
the model in use. The levels of equal optical depth τl (0.1,1,2 and 5) along the line of sight are
shown by solid lines, and the half-light radius R1/2 by a dotted line.

Finally, the half-light radius R1/2 can be calculated for the obtained intensity
distribution using formula (5.45). Numerical calculations result in R1/2 ' 1.063R1,
where R1 is the radius of the photosphere at which the radial optical depth is τ = 1.

5.3.3 The Supercritical Accretion Regime

As repeatedly mentioned above, the standard accretion disc model has its appli-
cability limits, the first of which, the Eddington limit, was pointed out as early as
1973 by Shakura and Sunyaev (1973).

The Eddington limit (Eddington 1925) arises due to radiation pressure. An
isotropic source coincident with the gravitating centre produces a dynamical effect
on the surrounding matter through the pressure of its radiation. For an opacity κ,
this radiation pressure force acting upon a unit mass is

κF =
κL

4πR2 . (5.94)

If this force is balanced by the gravitational force (which is also inversely propor-
tional to the distance squared, thus eliminating R in the classical approximation),
matter becomes gravitationally unbound, which leads to wind launching and may
halt the accretion process itself. In the spherically symmetric case, this luminosity
limit is

LEdd =
4πGMc

κ
. (5.95)

The luminosity released during accretion is L = ηṀc2, where η is the accretion
efficiency, which is independent of Ṁ and M for the standard disc but is sensitive to
the position of the inner edge of the disc (and, respectively, to the rotation parameter
a). The accretion is considered supercritical if the luminosity L> LEdd, although this
is a fairly uncertain boundary, depending on both the geometry of the accretion flow



234 Pavel Abolmasov, Nikolay Shakura, and Anna Chashkina

(the Eddington limit is obtained in the assumption of spherical symmetry) and its
dynamics. In the case of an accretion disc, it is more correct to locally compare the
vertical component of gravity with the radiation pressure. A version of such a local
approach to the Eddington limit was used in our paper: Abolmasov and Shakura
(2012a). In such a local approach, it is convenient to normalize the accretion rate to
an ‘Eddington’ value that does not contain the global accretion efficiency η :

Ṁ∗ =
LEdd

c2 =
4πGM

cκ
, (5.96)

Radiation pressure in the inner parts of the accretion disc dominates over gas pres-
sure. This is the so called ‘zone A’ of the standard disc, in which the transition to
supercritical accretion occurs for all reasonable values of BH masses. Here, the disc
thickness H is determined from the balance between the radiation pressure force
and the vertical component of the BH gravity

κ
c

Q =
κ
c

3
8π

GMṀ
R3 f =

GM
R3 H, (5.97)

which yields in the nonrelativistic approximation

H =
3

8π

κṀ
c

(
1−
√

Rin

R

)
=

3
2

GM
c2 ṁ

(
1−
√

Rin

R

)
. (5.98)

It can easily be seen that an increase in accretion rate gives rise to the occurrence
of a thick disc. When the total luminosity exceeds the Eddington limit, part of the
released radiation energy is converted to kinetic energy of the flow, leading to forma-
tion of massive noncollimated outflows. If we assume that the transition to supercrit-
ical accretion occurs under the condition H(R) > R, we may identify the maximal
radius at which the disc still remains locally supercritical. Traditionally, this radius
Rsph is named the spherization radius (Shakura and Sunyaev 1973) as the thicker the
disc the closer it approaches spherical symmetry. The simplest nonrelativistic case,
which takes into account the presence of the inner edge of the disc, allows us to
estimate rsph as the largest solution to the equation

r
1−1/

√
r
=

3
2

ṁ
rin

. (5.99)

This equation has a positive solution starting from ṁ = 4.5rin, which may be con-
sidered as the critical value of the accretion rate. Solving the above equation allows
us to express the spherization radius as

Rsph =
3
2

GM
c2 ṁ×ψ

2(ṁ/xin). (5.100)

Here, the correction factor ψ , calculated in the assumption of zero stress, accounts
for the presence of the inner edge of the disc. When Eq. (5.99) has three real roots,
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the relevant is the largest of them

ψ(x) =
2√
3

cos
(

1
3

arccos
(
− 3√

2x

))
. (5.101)

For ṁ� 1, the function ψ(ṁ/xin) quickly approaches unity, and

Rsph '
3
2

ṁ× GM
c2 , (5.102)

which is consistent with the classical definition of the spherization radius (Shakura
and Sunyaev 1973).

5.3.3.1 Size of the Photosphere

Assume that a QSO accretion disc is surrounded by a wind which is spherically
symmetric and carries away an appreciable part of the accreting matter (the outflow
rate is fwṀ, where fw . 1 is the mass fraction ejected in the wind). Since most of
the mass is lost by the disc at radii close to the spherization radius, the velocity of
the outflow is close to virial at Rsph

vw = βw

√
2GM/Rsph =

2√
3

βw

ψ
ṁ−1/2c, (5.103)

where βw ' 1 is a scaling dimensionless constant of the order of unity, and ψ is the
correction factor determined using expression (5.101). It can be shown that the use
of the nonrelativistic formula is quite reasonable since post-Newtonian corrections
to the expression (5.103) are generally within a couple per cent. The radial optical
depth due to scattering is

τ =
∫ +∞

R
κT ρdR. (5.104)

The continuity equation allows us to estimate the density in the wind as ρ =
Ṁ

4πvwR2 . Substituting the expression for density and setting τ = 1, we obtain the

following estimate for the photospheric radius:

R1 =

√
3

2
fw

β
ṁ3/2

ψ× GM
c2 . (5.105)

This estimate is valid if the local Eddington limit is violated somewhere in the disc.
As we have already mentioned, a transition to the supercritical accretion regime

may be treated as a local process (energy flux becomes sufficient to throw a test
particle away to infinity), even if a large geometrical thickness of the disc restricts
the applicability of this approach. Considered locally, the Eddington limit depends
on GR corrections which make the effective vertical gravity near the equatorial plane
two or three times larger. Moreover, the effects related to disc thickness should be
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accounted for: the deviations from the Kepler rotation law, dependence of angular
velocity on height, and radial heat advection. Taken together, these effects seem to
raise the value of the limit by a factor of a few, slightly decreasing the size of the
spherization radius (Abolmasov and Chashkina 2015).

5.3.3.2 Evidence for Supercritical Accretion

Let us assume that a QSO is the source of a wind producing a scattering en-
velope, the optical depth and the size of which, in general, depend on the wind
strength, and increases with the rate of matter ejection and thus with the accretion
rate. Some QSOs (those hidden below scattering envelopes) will have significantly
larger effective disc sizes depending more weakly on wavelength, since the size of
the scattering photosphere does not depend on wavelength. Most probably, the en-
velopes are actually nonspherical and translucent. However, for simplicity we will
use the approximation of a spherical envelope with a clearly outlined photosphere.
Despite the fact that in reality such a photosphere should be fairly fuzzy, with strong
limb darkening, all the intensity distribution and limb darkening effects are almost
independent of wavelength. The size of the photosphere does not depend on wave-
length as long as scattering by free electrons remains the main source of opacity. We

X−rays outflow

photosphere

(τ∼1)

accretion disc

Fig. 5.15 The accretion disc, the wind and the scattering envelope produced by the wind. The
area in red is the disc with size depending on the wavelength. The envelope (hatched) is unable to
hide the disc at long wavelengths. It seems that there is a channel in the envelope through which
(directly or after reflection/scattering) the X-rays from the inner parts of the disc may be observed.

estimated the accretion rates and the masses of the objects from the sample of Mor-
gan et al (2010), for which disc sizes through microlensing are known and fluxes
in the photometric I band are available. The accretion rates and BH masses were
determined using simultaneous solution of Eqs.(5.44) and (5.105) for M and ṁ. Un-
fortunately, the original tables and plots contained a calculation error; the correct
results are given in Abolmasov and Shakura (2013) and in this book in Table 5.2
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and Fig. 5.16. Figure 5.17 shows the corresponding accretion rates in solar masses
per year. The masses obtained are essentially lower than the ‘virial’ masses Mvir cal-
culated using the reverberation method or through emission line widths (Vestergaard
and Peterson 2006), while the accretion rates are suspiciously high. If we abandon
the use of self-consistent mass estimates in favour of virial masses, the accretion
rates become ṁ ∼ 10− 100, consistent with some independent estimates of maxi-
mal accretion rates in distant QSOs (Collin et al 2002). Using (5.44) to estimate BH
masses seems to be incorrect since this formula is valid for the standard disc, not
taking into account neither the decrease of accretion rate within spherization radius
nor any of the true absorption processes affecting the observed QSO spectrum. Two
circumstances should be noted: first, the optical Icorr magnitudes are determined us-
ing a strong lens model with an amplification factor of tens or hundreds, potentially
vulnerable to systematic errors. Second, the QSO radiation which is detected in the
optical to near infrared range, has been emitted in UV, thus being very sensitive to
absorption by interstellar dust (one magnitude of absorption in the V band corre-
sponds to absorption of two to four magnitudes at 0.1-0.2 µm). The presence of
dust in galactic centres is rather expected, and taking this into consideration enables
a substantial decrease of the accretion rates and increase of the BH masses, making
them consistent with virial estimates. For this, dust extinction of the order of 1−2m

is sufficient, which corresponds to absorption lower than ∼ 0.m5 at optical wave-
lengths. Taking into account absorption Aν yields a correction for the observed flux
Fobs

ν = 10−0.4Aν Fem
ν . Estimates for the accretion rate and the BH mass will depend

on the absorption as
ṁ ∝ 10−0.3Aν , (5.106)

M ∝ 100.45Aν , (5.107)

and
Ṁ ∝ 100.15Aν . (5.108)

On the other hand, interstellar extinction does not affect the shape of the amplifi-
cation curves and therefore cannot affect the observed values of the ζ parameter.
Possible contribution of systematic uncertainties due to interstellar extinction was
considered for SDSS 0924+0219 in (Floyd et al 2009).

Systematic uncertainties in our calculations may be introduced by other reasons
as well. First, the formulas in use contain the dimensionless coefficients fw ( the
fraction of accreting matter ejected in the form of a wind) and βw (the ratio of
the terminal wind velocity to the escape velocity at the spherization radius). The
first coefficient is less than unity by definition. The second coefficient may be more
or less than unity, depending on how the momentum and energy are redistributed
in the outflowing matter. If the wind from the spherization radius is accelerated
approximately radially, its velocity is:

v(R)'
√

2
(

L
LEdd

−1
)
×
(

GM
Rsph

− GM
R

)
. (5.109)
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Table 5.2 The accretion rates of microlensed QSOs as estimated from their sizes in the framework
of the scattering envelope model. The virial masses and the half-light radii were taken from (Mor-
gan et al (2010)) and (Blackburne et al (2011)) and given in separate columns. Table 2 also contains
the relative accretion rates, the masses MS and the corresponding accretion rates in absolute units
(M� yr−1) calculated using photometric and microlensing data for a = 0.9. All ζ values are taken
from Abolmasov and Shakura (2012a) (and references therein). If several estimates of a struc-
tural parameter are available for an object, these are averaged according to the weights inversely
proportional to the uncertainties.

Object z Mvir , 109M� R1/2, 1015cm ṁ MS , 109M� Ṁ, M� yr−1 ζ Icorr
I II

Q J0158-4325 1.29 0.16 1−4 – < 65 > 0.065 < 10 – 19.09±0.12
Q J0158-4325∗ 1.29 0.16 5−30 – 5−9 80−300 0.1−0.15 – 19.09±0.12
HE J0435-1223 1.689 0.5 2−40 4−21 90−1300 0.007−0.024 5−20 0.7±0.6 20.76±0.25
SDSS 0924+0219 1.52297 0.11 1−6 2.2−10 170−800 0.005−0.011 2−4 0.46±0.3 21.24±0.25
FB J0951+2635 1.24603 0.89 12−80 – 60−300 0.11−0.25 40−100 – 17.16±0.11
SDSS J1004+4112 1.73995 0.39 1−4 – 40−150 0.017−0.031 3−6 – 20.97±0.22
HE J1104-1805 2.3192 2.37 10−30 – 40−130 0.18−0.30 30−50 1.65±0.5 18.17±0.31
PG 1115+080 1.73549 1.23 40−190 25−110 500−2600 0.011−0.025 30−70 0.4±0.5 19.52±0.27
RXJ 1131-1231 0.654 0.06 3−8 1.0−6 360−900 0.0022−0.0035 3−5 0.4±0.5 20.73±0.4
SDSS J1138+0314 2.44375 0.04 0.5−8 3−26 30−400 0.008−0.028 2−8 0.4±0.5 21.97±0.19
SBS J1520+530 1.855 0.88 8−20 – 70−170 0.07−0.11 20−30 – 18.92±0.13
QSO J2237+0305 1.695 0.9 5−20 – < 100 > 0.17 < 40 1.15±0.2 17.90±0.44
MGJ 0414+0534 2.639 1.82 – – – – – 1.5±0.4 –
RXJ 0911+0551 2.799 0.8 – – – – – 0.17±0.4 –
∗ – Morgan et al (2012), I – Morgan et al (2010), II – Blackburne et al (2011)

Fig. 5.16 The masses and the dimensionless accretion rates obtained in a self-consistent way in
the framework of the scattering envelope model for a = 0.9 (left) and a = 0 (right). The dotted
horizontal lines indicate the critical accretion rates, the solid lines show the ṁ values for which the
apparent sizes of accretion discs and envelopes become comparable. The uncertainties correspond
to a significance level of 1σ , considering the uncertainties in determining the source sizes and the
magnitudes. The asterisk indicates that the data were taken from Morgan et al (2012); all the other
data were taken from Morgan et al (2010). This illustration together with the next one were taken
from Abolmasov and Shakura (2013).
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Fig. 5.17 The masses and the dimensional accretion rates obtained in a self-consistent way in the
framework of the scattering envelope model for a = 0.9 (left) and a = 0 (right). The notation is the
same as in the previous figure.

Close to the Eddington limit, L/LEdd∼ ṁcrη ∼ 4.5. Therefore, βw'
√

L/LEdd−1∼
2. Lower values of βw may arise in cases when the main contribution to the expan-
sion of the envelope comes from matter launched at relatively large radii in the disc
(this result is supported by numerical calculations of Sadowski et al (2014)). In this
case, a decrease in velocity approximately by a factor of 10 (βw ∼ 0.1) makes it pos-
sible to reconcile, on average, the mass estimates with the virial ones as the resulting
quantities scale with the parameter as

ṁ ∝ βw, (5.110)

M ∝ β
−1/2
w , (5.111)

and
Ṁ ∝ β

1/2
w . (5.112)

Another very important effect, which is able to appreciably change the expected
envelope size, is the presence of additional opacity mechanisms. The accretion rates
and masses depend on the opacity κ as follows2:

ṁ ∝ κ−2 (5.113)

M ∝ κ (5.114)

Ṁ ∝ κ−1 . (5.115)

The presence of additional absorption mechanisms allows us to explain why the
mean value ζ is not zero for QSOs with envelopes. For instance, free-free scattering
in a comparatively hot wind (hν � kT ) results in the following dependence of the

2 The photospheric size is proportional to R1 ∝κṀ, while the product MṀ ∝ F3/2
ν does not depend

on opacity; the Thomson opacity κT , which is included in the Eddington luminosity normalization,
is considered fixed.
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size of the photosphere on wavelength (see Cassinelli and Hartmann 1977):

R1 ∝ λ
2

2n−3m/2−1 , (5.116)

if ρ ∝ r−n and T ∝ r−m. In particular, ζ = 8/9 for n = 2 and m = 1/2.
A lot remains unclear in the schematic scenario outlined above. In particular, the

X-rays we observe come from a source that is much more compact than the en-
velope. We may assume that the shape of the envelope differs from spherical and
has a channel to release X-rays (as shown in Fig. 5.15). It is also unclear how the
low masses obtained in Abolmasov and Shakura (2012a) can be reconciled with the
virial mass estimates. Maybe, further numerical calculations will help finding the
answer. Note for example that an optically thick wind subjected to different insta-
bilities may become highly inhomogeneous near a photosphere arising at a distance
of the order of hundred gravitational radii (Takeuchi et al 2013). This differs con-
siderably from radii calculated according to formula (5.105).

5.3.4 Scattering by Inflowing Matter

As we could see above, the observed properties of lensed QSOs may be explained
using a scattering envelope model if the wind velocity is assumed to be very small,
less than one tenth of the virial velocity at the spherization radius. Such a small
dimensionless factor, far less than unity, is unlikely to arise during wind accelera-
tion: this requires the total mechanical energy of the wind to be equal to zero with
a precision of the order of βw � 1, too much of a fine tuning to represent reality.
Only the smallness of the total mechanical energy can ensure a low wind velocity
(compared to the virial velocity in the acceleration area) at large distances. On the
other hand, during accretion of matter with high angular momentum, it is quite nat-
ural to expect very small radial velocities determined by loss or viscous transfer of
the angular momentum. If both inflows and outflows exist, it is more reasonable to
expect the disc radiation to be scattered by the inflowing gas rather than by the wind.
The angular momentum of the accreting matter definitely needs to be high to form
an accretion disc.

Many active galactic nuclei (AGNs), including QSOs, are surrounded by gas-dust
tori (Elitzur 2008) and areas radiating in broad emission lines, BLR (Peterson 2006).
The gas-dust torus seems to be a reservoir from which the active galactic nucleus
receives matter to accrete. The data available for well-studied galactic nuclei, such
as NGC5548 (Kollatschny and Zetzl 2013), indicate that the geometries of the BLR
resemble tori or geometrically thick discs with axis ratios different for different
emission lines. On the other hand, there is evidence (Doroshenko et al 2012; Grier
et al 2013) that the gas in BLR has, on average, radial velocities directed inwards.
This contradicts the widespread conception that broad lines form in the disc wind
(see, for example, Korista 1999).
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A possible contribution of this inflowing scattering substance to the observed
spatial properties of the QSO ‘disc’ is estimated in Abolmasov (2017). A reasonable
fit to the observational data can be achieved by assuming a radial inflow velocity of
the order of one per cent of the virial, the size of the scattering area being of the
order of 104 gravitational radii. Assuming that the accretion rates of the objects
of the sample are close in absolute values and constitute a few solar masses per
year (consistent with the observed values within an order of magnitude), we can
reproduce the separation of objects into two groups with different values of ζ (see
Fig. 5.12) and absolute values of the observed radii. However, for this to work, the
contribution of the scattered radiation should be significant, which requires large
geometrical thickness and high scattering efficiency.

This approach is able to qualitatively explain the fact that the ζ parameter is
noticeably larger than zero for most of the objects, although appreciably less than
that for the standard disc. This rather expected effect may be illustrated using the
following simplified model. Let us assume there is a disc for which the half-light
radius is Rd = Rd(λ ). If, instead of the disc, we see a halo with intensity distribution
I ∝ R−2 between Rd and some fixed outer radius Rout, the half-light radius of the halo
will be R1/2 '

√
RdRout ∝ R1/2

d . In terms of the slope of the dependence R1/2(λ ),
this means ζ becomes equal to half of the structure parameter for Rd.

The simplified assumption of coherent scattering by a geometrically thick accre-
tion flow is not able to conclusively resolve the problem. The solution to the problem
seems to be directly related to other problems of accretion onto supermassive black
holes. First, there are inconsistencies in the spectra of QSOs: the predictions of the
standard theory of multi-temperature accretion disc do not fit well with the shapes
of QSO spectra in the range 0.1− 1 µm, the area of the ‘big blue bump’, where it
is supposed to work. It seems quite reasonable (this possibility was considered by
Lawrence 2012) that the observed radiation of the ‘big blue bump’ is not emitted by
the surface of the accretion disc itself. Instead, it is emitted further away from the
BH, in the gas ionized and heated by harder disc radiation. In this case, the shape of
the observed spectrum is determined by local microscopic processes, namely, ion-
ization, radiation transfer, and cooling, rather than by energy release per unit area of
the emitting surface. This model allows us to explain why the QSO spectra in UV
and optics are approximately of constant shape and why there is no strong Lyman
jump at all. If emitting regions are ionized by comparatively hard radiation with
energies of a few tens of eV, recombination will not result in the emergence of any
appreciable Lyman emission jump since Lyman continuum quanta will be emitted
mainly at high optical depths, being effectively reprocessed into Lyα quanta (this
effect of a ‘Lyman greenhouse’ was considered in Abolmasov and Poutanen 2017).
It seems that to accurately explain the spatial properties of the emitting areas in
lensed QSOs it is necessary to develop a detailed physical model for scattering and
reprocessing of the radiation of the disc, capable of reproducing both the contin-
uum and the emission-line components of QSO emission together with their spatial
properties. Such a unified spectral model might be applied not only to the photo-
metric estimates of accretion discs and their spectral properties but also to the data
on microlensing-induced spectral variability of QSOs, that are currently being grad-
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ually accumulated (O’Dowd et al 2015; Braibant et al 2016; Guerras et al 2013a).
In principle, a much larger amount of information on the emitting area could be de-
rived from the evolution of emission line profiles since amplification of areas with
different radial velocities, velocity dispersions and physical conditions do not occur
simultaneously.

5.4 Conclusions

It appears as if the opportunities provided by QSO microlensing are far from
being exhausted and further advance in this area will require further improvement
in the methods involved in the analysis of the observational data and elimination of
the numerous sources of systematical errors (see, for example, Vernardos and Fluke
2014 where such biases are discussed for strong lensing models). It is likely that not
only the size but also the disc brightness distribution may soon be reproduced on the
basis of the amplification curves, allowing us to directly verify models of accretion
flows and scattering envelopes.

The effects of broad emission-line microlensing could become an important
source of information. It has now become clear that microlensing often distorts
line profiles, affecting one wing more than the other. The regions producing such
lines should be spherically asymmetric, resemble thick discs and, likely, rotate fast
enough (Braibant et al 2014). The FeII and FeIII emission line blends seem to
form approximately in the same area as the UV continuum radiation (Guerras et al
2013b). Unfortunately, there have been no effects detected so far which might be
related to chromatic lensing of IR radiation from QSOs since the available data on
far IR variability are very scarce.

The question of what may be the nature of the X-ray emission in QSOs requires
special attention. The sizes of the X-ray sources estimated using microlensing data
often turn out comparable to the assumed size of the innermost stable orbit (Morgan
et al 2012). Possibly, the X-rays could be caused by shocks arising between the
innermost stable orbit and the event horizon, in the area that emits the energy stored
in an accretion disc of finite thickness (see Introduction in Abolmasov (2014) and
the discussion therein). The source of the X-rays may also be some sort of hot
corona, although very compact, with a size of the order of the radius of the innermost
stable circular orbit (Cao 2009).
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Chwolson O (1924) Über eine mögliche Form fiktiver Doppelsterne. Astronomische
Nachrichten 221:329

Collier S, Peterson BM (2001) Characteristic Ultraviolet/Optical Timescales in Ac-
tive Galactic Nuclei. ApJ 555:775–785, DOI 10.1086/321517

Collin S, Boisson C, Mouchet M, Dumont A, Coupé S, Porquet D, Rokaki E
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Chapter 6
Transient dynamics of perturbations in
astrophysical disks

Dmitry Razdoburdin and Viacheslav Zhuravlev

This chapter reviews some aspects of one of the major unsolved problems in un-
derstanding astrophysical (in particular, accretion) discs: whether the disc interiors
may be effectively viscous in spite of the absence of magnetorotational instabil-
ity. In this case, a rotational homogeneous inviscid flow with a Keplerian angular
velocity profile is spectrally stable, making the transient growth of perturbations
a candidate mechanism for energy transfer from regular motion to perturbations.
Transient perturbations differ qualitatively from perturbation modes and can grow
substantially in shear flows due to the non-normality of their dynamical evolution
operator. Since the eigenvectors of this operator, alias perturbation modes, are mu-
tually nonorthogonal, they can mutually interfere, resulting in transient growth of
their linear combinations. Physically, a growing transient perturbation is a leading
spiral whose branches are shrunk as a result of the differential rotation of the flow.
This chapter discusses in detail the transient growth of vortex shear harmonics in the
spatially local limit as well as methods for identifying the optimal (fastest growth)
perturbations. Special attention is given to obtaining such solutions variationally, by
integrating the direct and adjoint equations forwards and backwards in time, respec-
tively. The material is presented in a newcomer-friendly style.
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6.1 Introduction: modal and non-modal analysis of
perturbations

A salient feature of disc accretion is that it is impossible without a dissipation
mechanism for the differential rotation energy of matter. It is the internal friction in
the disc, i.e. irreversible interaction of its adjacent rings, that leads to the transfor-
mation of gravitational energy of the accreting matter into heat and electromagnetic
radiation, which simultaneously allows the matter to flow towards the centre and the
angular momentum to flow outwards to the disc periphery.

Direct dissipation is already possible due to the microscopic viscosity of the gas
(plasma). However, in astrophysical conditions it turns out to be absolutely insuffi-
cient to explain the observed properties of discs. Essentially, discs are too large for
the characteristic accretion time, tν , to be explained by microscopic viscosity. For
example, in protoplanetary discs with typical size L∼ 10 a.u., where the kinematic
viscosity is estimated to be νm ∼ 107 cm2/s, the accretion time is tν = L2/ν ∼ 1013

years, (see Section 3.3.2 in Armitage (2009)). Apparently, tν is several orders of
magnitude larger than the age of the Universe. At the same time, observations of
gas-dust discs around young stars suggest that their lifetime is as short as only a
few million years (see, for example, the review by Youdin and Kenyon (2013)). A
similar conclusion is obtained for hot accretion discs around, in particular, black
holes in close binary systems. In this case, for much smaller scales, L ∼ 1010 cm,
and somewhat smaller viscosity of the hydrogen plasma νm ∼ 105 cm2/s, we get
tν ∼ 3× 107 years, which exceeds by many orders of magnitude, for example, the
duration of X-ray Nova outbursts caused by non-stationary disc accretion (see the
review by Remillard and McClintock (2006)).

At the same time, it is known from statistical hydromechanics (see the discussion
of the Reynolds equations in Monin and Yaglom (1971), v. 1, Ch. 3) that the pres-
ence of significant correlating fluctuations of the velocity components in a flow is
equivalent to the presence of a high effective viscosity, that exceeds the microscopic
viscosity because the mixing scale of matter in the flow is much larger than the free
path length of individual particles. In turn, the high effective viscosity enhances the
angular momentum transfer towards the disc periphery, thus decreasing tν to the
observed values. The perturbations under discussion can generally be regular: for
example, accretion can be due to tidal waves generated in the disc by the secondary
companion of a binary system (see Menou (2000)). However, it is more natural to
assume that these perturbations are generated by turbulence in the fluid. The tur-
bulence takes its energy on the one hand from the rotational motion of matter on
large scales, and on the other hand, via interaction of perturbation components with
different wave numbers and cascades this energy to small scales where its direct
dissipation into heat occurs due to microscopic viscosity.

It is important to recognize that energy transfer from a regular flow to perturba-
tions should be mediated by some linear mechanism that follows from the dynamics
of small perturbations described by linearized hydrodynamic equations. This can be
rigorously proved for vortex fluid motion using the Navier-Stokes equations (see
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Schmid and Henningson (2001), Section 1.4, as well as Henningson and Reddy
(1994)). Therefore, a first natural step in a theoretical study of turbulence genera-
tion in a given (stationary) flow is to search for exponentially growing linear pertur-
bations against a steady-state background. Such perturbations are usually referred
to as modes, and the corresponding analysis is dubbed modal or spectral analysis of
perturbations, since it is used to determine eigenvalues of the corresponding dynam-
ical operator of the problem: (complex) mode frequencies. Turbulence arising from
growing modes is called supercritical . In astrophysical flows with Keplerian angular
frequency, spectral (magneto-rotational) instability with corresponding supercritical
(MHD) turbulence has been found in analytical and numerical calculations Balbus
and Hawley (1991), Hawley et al (1995) and Stone et al (1996) (see also reviews
Balbus and Hawley (1998) and Balbus (2003)) for discs with a frozen seed magnetic
field. Nevertheless, the magneto-rotational instability does not operate in cold low-
ionized discs. Protoplanetary discs, accretion discs in quiescent states of cataclysmic
variables and the outer parts of accretion discs in active galactic nuclei provide ex-
amples. Thus, it would be very important to show that differential rotation alone is
capable of exciting turbulence in Keplerian discs. This property of Keplerian flows
is universal, unlike the presence of a seed magnetic field together with sufficiently
high degree of ionization of matter, or the existence of flow inhomogeneities due to
the vorticity jump (see, for example, the review by Fridman and Bisikalo (2008)),
or the appearance of radial velocity gradients (see the review by Kurbatov et al
(2014)), of vertical and/or horizontal gradients of some thermodynamic values (see,
for example, Lovelace et al (1999) and Klahr and Hubbard (2014)). However, gener-
ation of turbulence in a homogeneous Keplerian flow without magnetic field remains
questionable so far.

The main difficulty here is that such a flow is spectrally stable: the specific an-
gular momentum for the Keplerian rotation increases with radial distance from the
centre, therefore according to the Rayleigh criterion (Rayleigh (1916) and Landau
and Lifshitz (1987), v. 6, paragraph 27) the growth of axially symmetric modes
is impossible; in turn, non-axisymmetric modes cannot grow since the necessary
Rayleigh condition on the existence of extremum of vorticity in the background
flow (Rayleigh (1880), Charney et al (1950)) is not fulfilled. In spite of that (and as
follows from laboratory experiments and numerical simulations), turbulence arises
in spectrally stable flows as well. In this case it is called subcritical . The plane-
parallel Couette flow provides the simplest and the most prominent example (see
the classical monographs by Drazin and Reid (1981) & Joseph (1976)).

In the theory of hydrodynamic stability, the transition of some flow (with non-
zero microscopic viscosity) to a turbulent state is usually characterized by a set of
critical Reynolds numbers Re (see Section 1.3.2 in the book Schmid and Henning-
son (2001)). The smallest of them is the number ReE such that at Re < ReE there
are no initial perturbations, irrespective of their amplitudes, whose energy would
grow at the initial time t = 0. ReE can be derived from the Reynolds-Orr energy
equation (see Section 1.4 in Schmid and Henningson (2001)). For a Couette flow
ReE ∼ 20. For Re > ReE initially growing perturbations at t = 0 arise, but as long
as Re < ReG, again there are no initial perturbations with an amplitude that would
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not decay at t→ ∞. This is the definition of the second critical number ReG > ReE.
Finally, at higher values Re > ReG perturbations appear that can sustain their am-
plitude at all times, and starting from some ReT > ReG the transition to a turbulent
state is experimentally observed. For a Couette flow ReT ∼ 360. The largest of the
critical Reynolds numbers is ReL > ReT, starting from which growing modes arise,
i.e. the flow becomes spectrally unstable. For a Couette flow, as well as for a Keple-
rian flow of interest here, ReL = ∞. However, the case of Keplerian flow is different
in that up to the present time, the value of ReG remains unknown, and ReT has not
been measured neither theoretically nor experimentally.

On the one hand, a general opinion has emerged that for Keplerian flows ReG =
ReT → ∞. This is based on the indirect argument that (locally) the action of the
tidal and Coriolis forces on the perturbation, which are absent in a Couette flow,
strongly stabilizes the shear flow (see Fig. 9 in the review by Balbus and Hawley
(1998), in which the results from Balbus et al (1996) are shown). This conclusion
is supported by local numerical simulations Hawley et al (1999), Shen et al (2006)
and series of laboratory experiments Ji et al (2006), Schartman et al (2009) and
Schartman et al (2012), in which stability of a quasi-Keplerian flow was observed
up to Re = 2× 106. Here we assume the quasi-Keplerian flow to be a so-called
anti-cyclonic flow (see, for example, the definition in Lesur and Longaretti (2005)),
where the specific angular momentum increases while the angular velocity itself, in
contrast, decreases towards the periphery.1

On the other hand, in a cyclonic flow subcritical turbulence is observed at finite,
although large values ReT, see Taylor (1936), Wendt (1933) on experiments with
spectrally stable Taylor-Couette flows, as well as their analysis in astrophysical con-
text in Zeldovich (1981) and later in Richard and Zahn (1999). In addition, negative
results obtained in numerical experiments mentioned above can be explained by in-
sufficient numerical resolution, as discussed in Longaretti (2002). In a subsequent
paper by Lesur and Longaretti (2005), the dynamics of perturbations in cyclonic and
anti-cyclonic flows was compared numerically. It was concluded that the required
numerical resolution in the second case is much higher than in the first case, and
the current computational power is insufficient to discover turbulence in a Keplerian
flow; also it is impossible to argue that the stabilizing action of the Coriolis force in
this case excludes the existence of a finite value of ReT < ∞. At last, another labo-
ratory experiment presented in Paoletti and Lathrop (2011) and Paoletti et al (2012)
shows the appearance of subcritical turbulence and angular momentum transfer out-
wards in a quasi-Keplerian flow. The contradictory results claimed by different ex-
perimental groups show the complexity of the experiment due to inevitable arising
of secondary flows induced by experimental tools. Presently, the influence of axial
boundaries on the laboratory flow is discussed (see Avila (2012) and Edlund and Ji
(2014)).

Anyway, it can be stated that of all types of homogeneous rotating flows, quasi-
Keplerian (anti-cyclonic) flows turns out to be the most stable relative to finite-
amplitude perturbations. Nevertheless, the smallness of microscopic viscosity in as-

1 In a cyclonic flow both these quantities increase with distance from the centre.
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trophysical conditions mentioned above simultaneously means that huge Reynolds
numbers should exist in the discs. For example, if in the protoplanetary disc dis-
cussed above we take its thickness H ∼ 0.05L = 0.5 a.u. as the natural limiting scale
of the problem, which corresponds to the sound velocity in the disc at this radius
cs ∼ 0.5 km/s, we get Re≈ 1010. In other astrophysical discs Re can be even higher.
Apparently, considering all negative results, the possibility of turbulence in astro-
physical Keplerian flows still spans several orders of magnitude: 106 < ReT < 1010.

Thus, a search for the critical value ReT for Keplerian flows continues, and in the
present chapter we will discuss in detail the necessary condition for turbulence
and/or enhanced angular momentum transfer to the disc periphery — the transi-
tion of energy from a regular flow to perturbations in such a flow. As mentioned
above, this transition should be mediated by a linear mechanism. Here, since a Kep-
lerian flow is spectrally stable, only (small) perturbations different from modes can
provide such a mechanism. The existence of such transiently growing non-modal
perturbations in a shear flow was suggested already in papers by Kelvin (1887)
and Orr (1907a), Orr (1907b). In astrophysics, this problem was studied in stel-
lar dynamics (see Goldreich and Lynden-Bell (1965), Julian and Toomre (1966)).
However, in the context of hydrodynamic stability, rigorous treatment of such per-
turbations and methods to determine them were elaborated only in the 1990s and
were dubbed non-modal perturbation analysis. To stress the inapplicability here of
traditional modal analysis, the corresponding concept of the transition to subcritical
turbulence due to transient growth of perturbations was called the bypass transition
. The non-modal analysis of perturbations was formulated in Farrell (1988), Butler
and Farrell (1992), Reddy et al (1993), Reddy and Henningson (1993), (see also the
reviews by Trefethen et al (1993), Schmid (2007) and the book by Schmid and Hen-
ningson (2001)). These papers showed that mathematically the non-modal growth is
due to non-orthogonality of the perturbation modes. If modes with a physically mo-
tivated norm are non-orthogonal to each other, their linear combinations can grow
in this norm, in spite of each separate mode being decaying, as in a spectrally stable
flow (see Fig. 6.5 in Section 6.3.1). In turn, the modes are non-orthogonal due to
non-normality of the linear dynamical operator governing the perturbation evolu-
tion (see the introductory information about the operators in the same section). A
non-normal operator does not commute with its adjoint operator, which is due to a
non-zero velocity shear in the regular flow (see the concluding part of 6.3.4 below
for more detail). Here, the higher Re, the higher the degree of non-orthogonality of
the modes to each other and, correspondingly, the higher transient growth is possi-
ble. The papers mentioned above argue that the maximum possible transient growth
of perturbations during a fixed time, called the optimal growth, is determined by the
norm of a dynamical operator that can be obtained by calculating singular vectors
of the operator (see 6.3.1 for more detail). Finally, the operator norm is tightly re-
lated to the notion of the operator’s pseudospectrum (see Trefethen et al (1993) and
Schmid and Henningson (2001)).

Later this method was applied to astrophysical flows in Ioannou and Kakouris
(2001), Yecko (2004), Mukhopadhyay et al (2005), where different models were
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used to search for optimal perturbations demonstrating the optimal growth. In par-
ticular, it was shown that for a Keplerian velocity profile, the growth can be sub-
stantial only starting from Re∼ 106, while in a similar setup for an iso-momentum
profile and a Couette flow the growth starts already at Re∼ 103 (see the discussion
in Mukhopadhyay et al (2005)). Here, the papers by Meseguer (2002) and Maretzke
et al (2014) should also be mentioned, where the transient dynamics in a spectrally
stable Taylor-Couette flow including both cyclonic and anti-cyclonic regimes is dis-
cussed. A correlation was found in Meseguer (2002) between the experimentally
obtained stability boundary in a laminar flow (see Coles (1965)) and the optimal
growth value; Maretzke et al (2014) found that for one and the same Re number,
in a quasi-Keplerian regime the transient growth is minimal. Using the correlation
from Meseguer (2002), the authors Maretzke et al (2014) estimated ReT ∼ 105 for
the quasi-Keplerian regime. As in the numerical experiments Balbus et al (1996),
Hawley et al (1999) and Shen et al (2006) mentioned above, the effective Re, caused
by the numerical viscosity, were hardly above ∼ 104−105, it is not surprising that
in these studies the Keplerian profile was stable against perturbations.

Presently, there are in addition a lot of astrophysical studies of the transient
growth of local perturbations using the Lagrangian method, where a transformation
to the reference frame co-moving with the shear is performed and separate shear
harmonics are considered (see Section 6.2.2). It was found that in the local space
limit, transiently growing vortex shear harmonics emit wave shear harmonics of var-
ious type (depending on the compressibility or certain inhomogeneities in the flow)
at the moment of swing (see Section 6.2.2), which themselves demonstrate non-
modal growth Lominadze et al (1988), Fridman (1989), Chagelishvili et al (1997),
Chagelishvili et al (2003), Tevzadze et al (2003), Afshordi et al (2005), Bodo et al
(2005), Tevzadze et al (2008), Heinemann and Papaloizou (2009a), Heinemann and
Papaloizou (2009b), Tevzadze et al (2010), Volponi (2010), Salhi and Pieri (2014).

Finally, Umurhan et al (2006) and Rebusco et al (2009) investigated the non-
linear transient dynamics of three-dimensional perturbations taking into account
the global structure of the flow in the model of a geometrically thin disc with α-
viscosity. As in Ioannou and Kakouris (2001), these papers discussed the possibil-
ity of exciting non-modal perturbations by weak turbulence, already present in the
disc, and giving rise to low effective viscosity parametrized by the α-parameter.
In Section 6.2.3 we will also consider the influence of the effective viscosity on
the transient growth of vortices on different scales in comparison to the disc thick-
ness. Thus, the transient growth of perturbations can be discussed not only in the
context of the bypass transition of a laminar flow to turbulence, but as a mecha-
nism to enhance the angular momentum transfer in a disc with pre-existing weak
turbulence producing low viscosity. In the final case this turbulence can be mathe-
matically treated as an external stochastic perturbation in a shear flow, which transits
into a quasi-stationary state with significant amplitude increase of perturbations due
to non-normality of the linear operator governing their dynamics (see Ioannou and
Kakouris (2001)).

The purpose of this chapter is to consider in detail the transient growth phe-
nomenon using the simplest example of two-dimensional adiabatic perturbations in
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Fig. 6.1 Contours of the most unstable perturbation mode with azimuthal wave number m = 2
in the model of a quasi-Keplerian thin torus described in 6.3.2. Parameters of the calculation are:
Characteristic disc aspect ratio: δ = 0.3, inner and outer boundaries are at r1 = 1 and r2 = 4,
respectively, polytropic index of matter: n = 3/2. The mode increment and phase velocity are
ℑ[ω] ≈ 0.001 and ℜ[ω] ≈ 0.26, respectively. Shown is the time (in units of inverse Keplerian
frequency at the inner disc edge) since the conventional moment when the mode had the unit
amplitude. The arrow shows the rotational direction of matter in the disc. The method of calculation
is described in 6.4.2.
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Fig. 6.2 Contours of the perturbation m = 2, demonstrating a maximum possible transient growth
of acoustic energy at time topt = 10 counted from the beginning of the perturbation evolution
in units of the inverse Keplerian frequency at the inner disc edge. The initial perturbation has
conventionally unity amplitude and the model of the flow is the same as that in Fig. 6.1. The
method of calculation is described in 6.4.2.

a homogeneous rotating shear flow with a quasi-Keplerian angular velocity profile.
In Section 2 we present an analysis of the shear vortex harmonics that are respon-
sible for the transient growth in the spatially local treatment of the problem, and
discuss the mechanism of perturbation growth using them as an example. Sections 3
and 4 are mainly devoted to methods of studying the non-modal perturbation growth
as well as to finding the optimal perturbations with maximum growth. Two methods
of obtaining the optimal growth curve are presented: a matrix and a variational one.
The variational method is less applied, especially in astrophysical studies (see Zhu-
ravlev and Razdoburdin (2014)). However, it is essentially more universal than the
matrix method. For example, using this method, we calculated in this chapter one
of the optimal transient perturbations in a geometrically thin quasi-Keplerian flow
with free boundaries (Fig. 6.2) as well as the most unstable perturbation mode (Fig.
6.1), which we discuss in detail in the concluding part of Section 6.4.2. A compar-
ison of Fig. 6.2 and Fig. 6.1 shows that these two types of perturbations are indeed
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qualitatively different: the transient spiral is wound up by the flow and its amplitude
increases, while the modal spiral rotates as a solid body and demonstrates a mono-
tonic but very weak growth due to the low instability increment. Here, the phase
velocity of the modal spiral is such that its corotation radius, at which the energy is
transferred from the regular flow, lies inside the flow.

6.2 Analytical treatment of two-dimensional vortices

6.2.1 Adiabatic perturbations in a rotational shear flow

Consider first the dynamics of small adiabatic perturbations in a perfect fluid
with an isentropic equation of state. Perturbations will be described using the Euler
approach, i.e. as variations of physical quantities such as density ρ , velocity v and
pressure p at a given point of space at a given time in the perturbed flow relative
to the unperturbed background 2 For simplicity we assume no entropy gradients
in the fluid. Then, on the right-hand side of the Euler equations it is convenient to
switch from the pressure gradient to the enthalpy gradient. Indeed, under constant
entropy the enthalpy differential per unit mass is dh = d p/ρ (see Landau and Lif-
shitz (1980)), and this is valid in both the background and perturbed flows. There-
fore, for the Euler perturbations we get δ (∇p/ρ) = ∇δh. Making use of this rela-
tion, we write down the equations for δρ , δh and δv (see also Landau and Lifshitz
(1987), paragraph 26) in the form:

∂δv
∂ t

+(v ·∇)δv+(δv ·∇)v =−∇δh, (6.1)

∂δρ

∂ t
+∇ · (ρδv)+∇ · (δρv) = 0, (6.2)

where we have assumed that v and ρ are the velocity and density of the unper-
turbed (background) flow, which itself can evolve in time. Equations (6.1) and (6.2)
are linear since perturbations are small, and all quadratic terms are omitted.

6.2.1.1 The model and basic equations

To write down the projections of the corresponding equations, let us specify the
model we wish to consider to illustrate the transient dynamics. First of all, we as-
sume that the background flow is stationary and purely rotational, which is well
satisfied in astrophysical discs. This means that the flow is axially symmetric, and

2 See the monograph by Pringle and King (2007) concerning applications of hydrodynamics to
astrophysical problems, in particular, on the application of the theory of hydrodynamic perturba-
tions.
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it is convenient to use the cylindric coordinate system (r,ϕ,z) in which the velocity
has only an azimuthal non-zero component v = (0,vϕ ,0). Below we will also use
the angular velocity of the flow, Ω = vϕ/r. It is important to note that isentropicity
of the fluid (which is a particular case of barotropicity) immediately implies that vϕ

and Ω depend only on the radial coordinate (see Tassoul (1978), paragraph 4.3). At
the same time, the density in equations (6.1) and (6.2) is a function of both r and
z: ρ = ρ(r,z). Most interesting, from a phenomenological point of view, is the case
of a geometrically thin disc, where H(r)/r� 1 and H is the disc semi-thickness.
The thin-disc approximation will be useful here to find how the density ρ changes
with height above the equatorial disc plane. Let us use the hydrostatic equilibrium
condition in the background flow:

∂h
∂ z

=−Ω
2(r)z, (6.3)

where the vertical gravity acceleration due to the central gravitating body around
which the disc rotates stands on the right-hand side. This acceleration is written here
ignoring quadratic corrections in the small parameter z/r. Integrating (6.3) with the
condition h(z = H) = 0 yields the vertical enthalpy distribution:

h =
1
2
(ΩH)2

(
1− z2

H2

)
. (6.4)

Next, due to the constant entropy assumption p ∝ ργ , where γ = 1 + 1/n is the
adiabatic index of matter written via the polytropic index n. This means that the
square of the sound velocity in the background flow is a2 = γ p/ρ , and the density
will be mainly dependent on z as follows:

a2
∝

(
1− z2

H2

)
, ρ ∝

(
1− z2

H2

)n

. (6.5)

Finally, for simplicity we will consider only perturbations in which δv is inde-
pendent of z. Generally, this very strong assumption needs justification. In particular,
it is relevant to ask: if we choose initial perturbations with such a property, will this
be conserved in the further evolution, and if not, how rapidly will this assumption be
violated? The answer depends on the vertical disc structure. For example, in Okazaki
et al (1987) it was shown that in the particular case of isothermal vertical density
distribution ((n→ ∞)), small perturbations with a homogeneous velocity field in z
are exact solutions to equations (6.1) and (6.2). In the more general case with finite
n this is no longer the case. However, for example three-dimensional simulations of
barotropic toroidal flows indicate that the most unstable perturbations there depend
only weakly on z (see Frank and Robertson (1988)). This can be related to the fact
that when the angular velocity is independent of z, the Reynolds stresses, responsi-
ble for the energy transfer from the main flow to the perturbations, do not depend
on the vertical component of the velocity perturbation (Kojima (1989), Kojima et al
(1989)). At last, the three-dynamical study of transient dynamics of vortices in a
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Keplerian flow by Yecko (2004) also shows that the most rapidly growing pertur-
bations in a vertically non-stratified medium are almost independent of z (see also
Maretzke et al (2014)). Now, looking at the vertical radial and azimuthal projections
of (6.1), we see that our assumption implies independence of δh on z, and therefore
the right-hand side of the vertical projection of (6.1) vanishes. Then, if we addition-
ally assume that vertical velocity perturbations are absent initially, δvz = 0, these
will remain absent. Therefore, the perturbed flow, as well as the background flow,
will remain in vertical hydrostatic equilibrium. It can be shown that the assump-
tion of vertical hydrostatic equilibrium in the perturbed flow is equivalent to the
assumption of a homogeneous velocity perturbation field in the z direction, i.e. one
assumption always follows from the other. At the same time, if the fluid is not isen-
tropic and there is a radial entropy gradient in the disc, the simplifying assumptions
made above are insufficient to set δvz to zero.

We have thus come to the conclusion that we will deal with a flat velocity per-
turbation field, i.e. δv = {δvr,δvϕ ,0}, with δvr and δvϕ , like δh, being dependent
on the radial and azimuthal coordinates only. However, it is important to empha-
size that this is not the case for δρ that enters the continuity equation (6.2). Here
it is convenient to use the relation between the pressure and density variations in
an isentropic fluid, d p = a2dρ , which is a consequence of the barotropic equation
of state. Due to the universal character of this relation, small Eulerian perturbations
will be related in the same way, i.e. δ p = a2δρ , where a2 is the speed of sound in
the background flow. Consequently,

δρ = (ρ/a2)δh, (6.6)

and this expression will be plugged into (6.2), after which only background quanti-
ties in equation (6.2) will depend on the radial coordinate. When integrating equa-
tion (6.2) in its new form over z, we should keep in mind that

H∫
−H

ρ

a2 dz =
√

π
Γ (n)

Γ (n+1/2)
ρ

a2

∣∣∣∣∣
z=0

,

H∫
−H

ρdz≡ Σ =
√

π
Γ (n+1)

Γ (n+3/2)
ρ|z=0, (6.7)

where we have used relation (6.5) and introduced the surface density Σ .
Using the fundamental property of the gamma-function, Γ (z+ 1) = zΓ (z), in

(6.2), we can explicitly write down the set of equations (6.1), (6.2) for azimuthal
complex Fourier harmonics δvr, δvϕ , δh ∝ exp(imϕ)

∂δvr

∂ t
=−imΩ δvr +2Ωδvϕ −

∂δh
∂ r

, (6.8)

∂δvϕ

∂ t
=− κ2

2Ω
δvr− imΩ δvϕ −

im
r

δh, (6.9)

∂δh
∂ t

=− a2
∗

rΣ

∂

∂ r
(rΣδvr)−

ima2
∗

r
δvϕ − imΩ δh, (6.10)
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where a2
∗ ≡ na2

eq/(n+1/2), and aeq is the background speed of sound in the equa-
torial disc plane. In addition, κ2 = (2Ω/r)d/dr(Ωr2) is the square of the epicyclic
frequency, i.e. the frequency of free oscillation of the fluid in the (r,ϕ) plane, which
can be easily checked by writing (6.8), (6.9) for δh = 0 and substituting there the
solution δvr,δvϕ ∝ exp(−iωt). We would like to point out that reducing the three-
dimensional problem to an effectively two-dimensional one in a thin disc clearly
can be performed by simply changing from volume density to surface density, and
replacing the polytropic index with n+1/2 as in the original, not integrated over z
equations, as was first shown in Churilov and Shuhman (1981).

6.2.1.2 Types of perturbations

The set of equations (6.8)-(6.10) describes the dynamics of two types of pertur-
bations inside the disc which are possible in the two-dimensional formulation of the
problem: vortices and density waves. 3 The separation between them for transient
perturbations will be described below in the local framework that allows the sim-
plest physical interpretation of the behavior of perturbations in a differentially rotat-
ing flow. In addition, when there are free radial boundaries in the background flow
(for example, in a disc with finite radial extension when at some inner and outer
radii Σ vanishes and the shear acquires a super-Keplerian angular velocity gradi-
ent), surface gravity waves arise near the boundaries (see papers Blaes and Glatzel
(1986), Glatzel (1987), Glatzel (1987)). This occurs because of the presence of a
somewhat significant radial pressure gradient in the flow, equivalent to a non-zero
gravitational acceleration, which gives rise to waves similar to ocean waves running
over the free surfaces (or radial density jumps).

6.2.1.3 On perturbation modes

These types of perturbations were studied in detail in the 1980s using the spec-
tral method, when the set of equations (6.8)-(6.10) was solved for particular tempo-
ral Fourier harmonics ∝ exp(−iωt) called modes (see the reviews by Narayan and
Goodman (1989) and Narayan (1991)). In this analysis, the local dispersion rela-
tion gives only real values of ω in all astrophysically important cases where Ω(r) is
such that the specific angular momentum Ωr2 increases with radius outwards. This
means local stability of the discs and prohibits exponential growth of small-scale
perturbations, which is also in accordance with the well-known Rayleigh criterion
for the particular case of axially symmetric perturbations (see paragraph 27 in Lan-
dau and Lifshitz (1987)). Unlike this case, the global setup of the problem for ax-
ially non-symmetric modes, when the set of differential equations with respect to
the radial coordinate with the corresponding boundary conditions at the inner disc
radius and at infinity (or at the outer disc boundary) is solved, yields a discrete set

3 Density waves are also frequently referred to as inertial-acoustic waves.
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of ω , where there can be complex frequencies as well (see, for example, Papaloizou
and Pringle (1984), Papaloizou and Pringle (1985), Papaloizou and Pringle (1987),
Glatzel (1987), Glatzel (1987), Goldreich et al (1986), Kojima (1986), Kato (1987),
Sekiya and Miyama (1988), etc.) The non-zero real part of the frequency corre-
sponds to the angular velocity of solid-body rotation of a given mode in the flow.
Generally, solid-body azimuthal motion of perturbations of constant phase with the
same azimuthal velocity ℜ[ω]/m at all r is the main distinctive feature of modes dis-
tinguishing them from other types of perturbations. Here ℜ means the real part of
the frequency ω . A non-zero imaginary part of the frequency, ℑ[ω], means that the
(canonical, see Friedman and Schutz (1978)) energy and angular momentum are ex-
changed between this mode and either the background flow Goldreich and Narayan
(1985), Drury (1985), Narayan et al (1987), Papaloizou and Pringle (1987) or the
mode with (canonical) energy of the opposite sign Glatzel (1987), Glatzel (1988),
Savonije and Heemskerk (1990). In the literature, the first mechanism is also re-
ferred to as the Landau mechanism, and the second one — as mode coupling. The
energy exchange in both cases is resonant, i.e. always occurs in the so-called critical
layer at the radius where ω = mℜ[Ω ], which is called the corotation radius. For a
detailed discussion of the physics of these resonant mechanisms of mode growth
(decay), see the monograph by Stepanyants and Fabrikant (1989). Nevertheless, in
flows with almost Keplerian rotation both the mode coupling and their interaction
with the background are extremely slow, and the corresponding increments even
for a substantial disc aspect ratio H/r ∼ 0.1 is only one hundred thousandth of the
characteristic Keplerian frequency (see Zhuravlev and Shakura (2007a), Zhuravlev
and Shakura (2007b)). This result led to the general conclusion that at least in the
simplest barotropic discs the modes cannot underly any hydrodynamic activity and,
in particular, cannot induce turbulence or any other variant of enhanced angular
momentum transfer to the flow periphery.

6.2.1.4 On perturbation measurements

To conclude this section, let us discuss the problem of perturbation measure-
ments. Indeed, in the present chapter we are interested in how strongly can some
perturbations grow in a given time interval. To describe this quantitatively, it is nec-
essary to introduce a norm of perturbations which would characterize the amplitudes
of δvr,δvϕ ,δh at a given time. This should be a real and positive definite quantity.

The most natural choice is the total acoustic energy of the perturbation in the
disc. A derivation of the expression for the acoustic energy density can be found for
example in Sect. 65 of Landau and Lifshitz (1987). Here we rewrite this expression
in a more convienient way:

E =
1
2

∫
rdrdϕdz

(
ρ0|δv|2 + a2

ρ0
|δρ|2

)
=

1
2

∫
rdrdϕdz

(
ρ0|δv|2 + ρ0

a2 |δh|2
)
.

(6.11)
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In the second term we use perturbation of enthalpy δh instead of perturbation of
density δρ . These two quantities are connected via the expression: δρ = δ p/a2 =
ρ0δh/a2. The integrated expression does not depend on the azimuthal coordinate,
and the integral over the vertical coordinate can easily be calculated with the help
of the expressions (6.7). Thus we get the final form of the expression for the total
acoustic energy of the perturbation:

E = π

∫
Σ

(
|δvr|2 + |δvϕ |2 +

|δh|2
a2∗

)
r dr (6.12)

After taking the derivative of (6.12) with respect to time and making use of equa-
tions (6.8)-(6.10), we obtain (see also expression (8) from Savonije and Heemskerk
(1990)):

dE
dt

=−2π

∫ dΩ

dr
rΣℜ[δvrδv∗ϕ ]r dr−2πrΣℜ[δvrδh∗] |r1,r2 , (6.13)

where the symbol ∗ means complex conjugation and r1 and r2 are the inner and
outer boundaries of the flow, respectively. Here r2 can be at infinity. As Σ → 0 at
the flow boundaries, the second term on the right-hand side of (6.13) disappears,
and we see that E can be variable precisely in a differentially rotating flow. Without
rotation or for solid-state rotation E remains constant in time. It is important to note
that the increase/decrease of E will imply that the average flow amplitudes δvr,δvϕ

and δh, also increase/decrease, since (6.12) contains squares of modules of these
values taken with the same signs. Note that for modes, equation (6.13) implies

dE
dt

∝ exp(2ℑ[ω]t), (6.14)

i.e. the small increments obtained for quasi-Keplerian flows allow us to conclude
that the total acoustic energy of modes there E ' const on dynamic ∼ Ω−1 and
acoustic ∼ (ΩH/r)−1 time scales.

Our task now is to understand how E can change over such time intervals for
arbitrary perturbations. By introducing the perturbation vector q(t) as a set of func-
tions {δvr(r), δvϕ(r),δh(r)} taken at some time t, the norm of the perturbation can
be chosen as

||q(t)||2 = E(t). (6.15)

6.2.2 Local approximation: transition to shear harmonics

The easiest solution to the problem formulated above can be obtained in the spa-
tially local approximation. In this approximation it is assumed that the characteris-
tic scale of perturbations, λ , is a small fraction of some fiducial radial coordinate
r0 around which the dynamics of the perturbation is studied, λ � r0. We intro-
duce the new radial variable x ≡ r− r0 � r0 and also the new azimuthal variable
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y ≡ r0(ϕ−Ω0t)� r0, where Ω0 ≡ Ω(r0) is the angular velocity of rotation of the
new coordinate system. Here in equations (6.8)-(6.10) only the leading terms in
small x are retained. In practice, this means that only the linear dependence on x has
to be taken into account in the angular velocity profile:

Ω =
dΩ

dx

∣∣∣∣∣
r0

x =−qΩ0
x
r0
�Ω0, (6.16)

where q ≡ −(r/Ω)(dΩ/dr)|r=r0 and Ω(x = 0) = 0, since we are working in the
frame rotating with angular velocity Ω0. The corresponding linear background ve-
locity is vloc

y = r0Ω =−qΩ0x.
Next, on the right-hand side of equations (6.8)-(6.10) we only keep terms of the

order up to ∼ x/λ and drop the terms ∼ x/r0 and lower. For clarity, we also write
down the coefficient before δvr in the term from (6.9) that includes κ2:

− κ2

2Ω
=−2Ω − r

dΩ

dr
= 2qΩ0

x
r0

+(r0 + x)
qΩ0

r0
= 3qΩ0

x
r0

+qΩ0

and we find that it is sufficient to take into account only the term qΩ0. Next, bear-
ing in mind that the new reference frame is not inertial, it is necessary to add the
perturbed Coriolis force components 2Ω0δvϕ to the right-hand side of (6.8) and
−2Ω0δvr to the right-hand side of (6.9).

After substituting im→ ∂/∂ϕ in the set (6.8)-(6.10), i.e. after returning back
to the arbitrary dependence of the Eulerian perturbations on ϕ and by denoting
the local analogues of perturbations of the velocity components as ux, uy and W ,
respectively, we arrive at the following equations:(

∂

∂ t
−qΩ0x

∂

∂y

)
ux−2Ω0uy =−

∂W
∂x

, (6.17)

(
∂

∂ t
−qΩ0x

∂

∂y

)
uy +(2−q)Ω0ux =−

∂W
∂y

, (6.18)(
∂

∂ t
−qΩ0x

∂

∂y

)
W +a2

∗

(
∂ux

∂x
+

∂uy

∂y

)
= 0. (6.19)

The set of equations (6.17)-(6.19) was first derived in Goldreich and Lynden-Bell
(1965) 4 (see also Regev and Umurhan (2008), where it is described for different
background flow models).

4 Even earlier, in the context of lunar dynamics, the local approach to study the motion of matter
was utilized by Hill Hill (1878).
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6.2.2.1 Transition to shear harmonics

A convenient property of the set of equations (6.17)-(6.19) is that by changing
to variables corresponding to the co-moving shear reference frame, it is possible
to make it homogeneous in both x and y, which, in turn, enables us to split any
arbitrary perturbation into individual spatial Fourier harmonics (SFHs) with certain
wave numbers kx and ky. Indeed, let us introduce the new dimensionless variables
x′ = Ω0x/a∗, y′ = Ω0(y+qΩ0xt)/a∗, t ′ = Ω0t 5. Such a substitution corresponds to
a change of partial derivatives according to the rule

a∗
Ω0

∂

∂x
=

∂

∂x′
+qt ′

∂

∂y′
,

a∗
Ω0

∂

∂y
=

∂

∂y′
, Ω

−1
0

∂

∂ t
=

∂

∂ t ′
+qx′

∂

∂y′
(6.20)

Making use of (6.20), we arrive at a set of equations in which all coefficients
depend only on t ′. We now substitute into this system SFH written in the form

f = f̂ (kx,ky, t ′)exp(ikxx′+ ikyy′), (6.21)

where f is any unknown variable, f̂ is its Fourier amplitude, kx and ky are the di-
mensionless wave numbers along axes x′ and y′, respectively, expressed in units
Ω0/a∗. Changing back to variables x, y in particular solutions (6.21) reveals that
they represent perturbations periodic in space whose phase forms a plane front with
orientation depending on time for ky 6= 0. The dimensionless wave number along x
has the form

k̃x(t)≡ kx +qkyt (6.22)

and changes with time: the wave vector turns around during advection by the shear
flow, which was first noted by Kelvin (1887) and Orr (1907a), Orr (1907b) so the
SFH are often called shear harmonics. We directly note that for k̃x < 0 the wave
vector is directed inwards, and on the global scale for Fourier harmonics with wave
number m this corresponds to so-called leading spirals with arms pointing turned in
the disc rotation direction. Inversely, the case k̃x > 0 corresponds to trailing spirals
with arms pointing oppositely to the disc rotation. If at the initial time kx < 0 , the
arms of the initially leading spiral are deformed and shortened by the flow, and
the so-called swing moment occurs, ts, when the wave vector of SFH is strictly
azimuthal and k̃x(ts) = 0, after which the spiral becomes trailing, and its arms are
stretched by the flow (see Fig. 6.2). This process is well-known in the dynamics of
stellar galactic discs (see paragraph 6.3.2 in Binney and Tremaine (2008)).

Thus, for SFH we arrive at the following set of ordinary differential equations:

dûx

dt
= 2ûy− i k̃x(t)Ŵ , (6.23)

5 Due to the vertical hydrostatic equilibrium in the disc, this means that we express the length in
units of its semi-thickness, H = a∗/Ω0.
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dûy

dt
=−(2−q)ûx− ikyŴ , (6.24)

dŴ
dt

=−i( k̃x(t)ûx + kyûy ), (6.25)

where ûx and ûy are expressed in units a∗ and Ŵ in units a2
∗. Here and below we will

omit the prime for the time variable notation.

6.2.2.2 Potential vorticity

The equations (6.23)-(6.25) have an important property: the quantity

I = k̃x(t)ûy− kyûx + i(2−q)Ŵ (6.26)

is the invariant of motion, which can be easily verified by direct calculation of dI/dt.
It turns out that I (to the multiplication factor i) is SFH of the Eulerian perturba-

tion of the potential vorticity. The potential vorticity ζ , which is by definition the
vorticity itself divided by density, ζ ≡ ω/ρ (see Johnson and Gammie (2005)), is
conserved in all fluid elements in plane-parallel barotropic flows. Therefore, for its
Eulerian perturbation we have

δ

(
dζ

dt

)
=

dδζ

dt
+(δv∇)ζ 0 = 0, (6.27)

where ζ 0 is the potential vorticity of the background flow. As in both background
and perturbed flows the velocity fields are plane-parallel, the vorticity has only one
non-zero z-component, which we will consider scalar below.

Next, by definition (in a non-rotating cylindrical coordinate system), the potential
vorticity in the background flow is

ζ0 = (rΣ)−1d/dr(Ωr2) = κ
2/(2ΩΣ) = (2−q)Ω/Σ , (6.28)

and should be constant in the local space approximation in use, since the velocity
shear is then constant, cf. (6.16). Therefore, the second term in the last equality in
(6.27) vanishes, and we see that δζ is indeed conserved. Apparently, the first two
terms in (6.26) arise due to perturbation of the vorticity itself, which is equal to the
curl of the velocity perturbation, and the third term emerges due to the non-zero den-
sity perturbation represented by the dimensionless quantity Ŵ (the coefficient 2−q
here arises due to multiplication by the constant background vorticity, cf. (6.28)).

6.2.2.3 Inhomogeneous wave equations. Density waves and vortices

We now differentiate equation (6.24) with respect to t and take into account the
relations following from equations (6.23), (6.25), as well as the definition (6.26), to



6 Transient dynamics of perturbations in astrophysical disks 267

obtain a new equation:
d2ûy

dt2 +K(t)ûy = k̃x(t)I, (6.29)

where K(t) ≡ k̃2
x(t)+ k2

y +2(2−q). Apparently, (6.29) represents a detached wave
equation for azimuthal velocity component perturbation, ûy, with an inhomogeneous
part ∼ I (see Bodo et al (2005)).

In a similar way, from (6.23) and (6.25) we derive two equations of the same
type:

d2ûx

dt2 +K(t)ûx +2iqkyŴ =−kyI, (6.30)

d2Ŵ
dt2 +K(t)Ŵ +2iqkyûx =−2iI, (6.31)

which can be separated by changing variables û± = (ûx±Ŵ )/2 (see Heinemann
and Papaloizou (2009a)).

Let us now consider in more detail, for example, equation (6.29). Its general
solution is the sum of the general solution of the corresponding homogeneous equa-
tion and a partial solution of the inhomogeneous equation. First, we consider both
these solutions in the solid-body rotation limit, i.e. without shear, q = 0. Then all
coefficients in (6.29) turn constant and

• the homogeneous equation has partial fundamental solutions û(dw)
y ∝ exp(±iωt)

with frequency ω =
√

K, corresponding to the density waves propagating in op-
posite directions,

• the partial solution with non-zero right-hand part can be taken as the constant
ûv

y = (kx/K) I. In other words, u(v)y corresponds to the zero frequency ω = 0 and
represents a static perturbation. This perturbation, apparently, has a non-zero vor-
ticity and corresponds to a vortex (it is possible to show that divergence of the
velocity perturbation for this solution vanishes, by taking the similar solution for
ûx from equation (6.30), ûv

x, and checking that the combination kxûv
x + kyûv

y = 0).

6.2.2.4 Amplification of density waves

Accounting for the non-zero shear, the density wave frequency becomes a func-
tion of time. For example, for leading/trailing spirals this frequency gradually de-
creases/increases with a simultaneous wavelength increase/decrease, which, in turn,
in the absence of viscosity, leads to a monotonic decrease/increase in the energy and
amplitude of the density waves. Such growth of density-wave amplitudes was stud-
ied in Chagelishvili et al (1994) and Chagelishvili et al (1997). The reason for this
growth can be understood from the fact that due to the axial symmetry of the back-
ground flow, the canonical angular momentum of the wave, Jc, should be conserved
(see Friedman and Schutz (1978)). From here we obtain that, following equation
(52) from Friedman and Schutz (1978), the canonical energy, Ec ∼ ωJc, linearly
increases starting from some sufficiently long time, since ω =

√
K (see above). The
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conservation of Jc for the local perturbation considered here is discussed in Section
3.2 of Heinemann and Papaloizou (2009a). Unlike Jc, the canonical energy itself in
this case is not conserved any more, since the time-variable frequency makes the
problem inhomogeneous in time. This growth (or decrease) of the energy, despite
that the wave frequency ω is present here, is already essentially non-modal, since
ω is a function of time, which, in turn, is connected precisely to the deformation of
SFH by the shear flow.

In the present chapter, however, we will be more interested in the ‘classical’
variant of non-modal growth, which is called ‘transient’ in the literature. In the
simplest model considered here it is represented by the vortex solution which for
q 6= 0 becomes dynamical and, oppositely to the waves, is aperiodic.

6.2.2.5 The vortex existence criterion

Before discussing in detail the behavior of the vortex solution, let us analyze the
justification for the decoupling of perturbations in waves and vortices made above
in the presence of a shear. Indeed, immediately after k̃x becoming variable, the so-
lution ûv

y does not exactly satisfy equation (6.29) anymore, since a non-zero second
derivative of ûv

y appears. Moreover, in the limit k̃x → 0 equation (6.29) becomes
homogeneous, and its solution describes density waves only. The region, in which
k̃x → 0, corresponds to the swing of SFH, and thus we see that the vortex solution
becomes poorly defined there: the vortex must share wave properties. This means
that we cannot neglect the second time derivative in equation (6.29) anymore for
slowly evolving solutions. In other words, ûv

y cannot be considered, even approxi-
mately, as a solution of equation (6.29). Let us discuss in more detail the criterion
of decoupling of density waves and vortices in a shear flow.

In order to do this, we use the fact that vortex dynamics is possible only in sub-
sonic flows (see Landau and Lifshitz (1987), end of Sect. 10). In the considered
case of an infinite flow this means that the difference in the fluid velocity on the
characteristic scale of the problem must be smaller than the sound velocity. The
characteristic spatial scale is determined by the instant spatial period of SFH in the
radial direction, λx ∼ H|k̃x|−1. For the infinitesimal perturbations considered here,
its is sufficient to apply the condition of vortex dynamics for the background flow,
and then the velocity difference is given simply by the change in the flow azimuthal
velocity, i.e. for a flow with constant shear we get

λxqΩ0/a∗ =
q
|k̃x|
� 1, (6.32)

Thus, the spatial radial period of the vortex harmonics must be smaller than the disc
thickness. It is important to note that the condition (6.32) does not directly contain
the azimuthal wave number ky, and hence perturbations can be vortex even if their
azimuthal spatial scale exceeds the disc thickness. In connection with this, it is most
important to consider the case of initially leading spirals, i.e. SFH with kx < 0. For
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such spirals, the swing occurs at

ts =−kx/(qky)> 0, (6.33)

i.e. when k̃x = 0. Clearly, if the initial spiral was vortex-like, and therefore |kx| � 1,
and its evolution was initially described by the approximate solution ûv

y, then in
some time interval around ts the vortex approximation is not valid, and the complete
equation (6.29) should be integrated. Let us call this time interval the swing interval
and obtain the condition under which its duration will be much shorter than the
characteristic time for evolution of SFH, determined by the time of spiral unwinding,
ts (see Zhuravlev and Razdoburdin (2014)).

The moments in time at which the vortex approximation breaks down can be
estimated from the limiting case of equality in the condition (6.32):

ts1,s2 = ts

(
1± q

kx

)
, (6.34)

from where we see that the swing interval is much shorter than the evolution time
of the entire vortex spiral, ts2 − ts1 � ts, once

|kx| � 2q, (6.35)

which does not contain ky. The condition (6.35) implies that to study vortex dy-
namics, we can use the solution ûv

y each time when at the initial moment the spiral
is sufficiently strongly wound irrespective of the value of ky, i.e. in both the true
short-wave limit ky � 1 and the long-wave limit ky � 1. In the last case, the vor-
tices will be referred to as ’large-scale’. Here we exclude the case ky ∼ 1, since as
was shown numerically in Chagelishvili et al (1997), Bodo et al (2005) and analyti-
cally studied in the WKB approximation in Heinemann and Papaloizou (2009a), in
this case during the swing the vortex additionally generate a pair of density waves
corresponding to trailing spirals and propagating inside and outside the disc. This
process is asymmetric, since only density wave generation is possible by vortices,
and not vice versa. In Heinemann and Papaloizou (2009a) analytical expressions
for the amplitude and phase of the generated wave were obtained. It was shown
that its amplitude is proportional, at first, to the vortex vorticity I, and at second, to
the combination ε−1/2 exp(−4π/ε) (see formula (53) in Heinemann and Papaloizou
(2009a)). Here ε is the small WKB parameter

ε =
qky

k2
y +κ2/Ω 2

0
, (6.36)

were, again, κ2/Ω 2
0 = 2(2− q). Expression (6.36) implies that the excitation of

density waves is exponentially suppressed in both the short-wave and long-wave
limits and is significant only for ky ∼ 1 (here we specify that we will not consider
the extreme cases where q� 1, and therefore ε� 1 even for ky ∼ 1, as well as when
q→ 2, and hence ε & 1 even for ky� 1).
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Thus, the vortex solution of equation (6.29) exists when the condition (6.35)
holds together with the requirement ky� 1 or ky� 1, which excludes density wave
generation with non-zero vorticity during the swing of a vortex SFH. At the same
time, these restrictions provide a criterion to separate waves and vortices in the per-
turbed flow. Indeed, under such constraints density waves with zero vorticity prop-
agate in the flow independently of vortices and represent the high-frequency branch
of solutions to equation (6.29) with zero right-hand side. Similarly, for example,
sound and wind exist independently in the Earth atmosphere.

6.2.2.6 Vortex solution

Below we will only consider the evolution of vortex SFH in a shear flow. To
conclude Section 6.2.2, we also obtain vortex solutions for ûx and Ŵ . This can be
done most easily by neglecting the second time derivatives of ûx and Ŵ in equations
(6.30) and (6.31), as has been done with equation (6.29) to obtain uv

y. Thus, we will
have for all three quantities:

ûv
x =−

K +4q
K2 +4q2k2

y
kyI, (6.37)

ûv
y =

k̃x

K
I, (6.38)

Ŵ v = 2i
qk2

y −K
K2 +4q2k2

y
I, (6.39)

It is important to note that the existence of an aperiodic vortex solution in the
form (6.37)-(6.39) is possible because of the main simplifying assumption on the
local constant velocity shear which provides the existence of time invariant I. This
enables us to reduce the set of three homogeneous first-order equations (6.23)-(6.25)
to one inhomogeneous second-order equation (6.29). (Other dynamical variables
can be obtained from the known solution ûy(t), which gives two independent wave
solutions (the general solution to the corresponding homogeneous equation) and one
aperiodic vortex solution (the partial solution (6.29)). However, taking into account
the gradient of velocity shear in the flow, the invariant I disappears, and a reduction
of the set of equations (6.23)-(6.25) becomes impossible. From this set we will thus
need to obtain directly three independent solutions, two of which, as before, will
correspond to the density waves, and the third solution will describe the vortex wave
called the Rossby wave (see the discussion in paragraph 4 in Bodo et al (2005)) 6.

6 See Brekhovskikh and Goncharov (1985), paragraph 43, for a discussion of Rossby waves arising
due to the gradient of the velocity shear (the gradient of vorticity) in an incompressible rotating
flow.
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6.2.3 Vortex amplification factor

To measure the growth of local perturbations, the average density of their acous-
tic energy can be taken as the local analogue of norm (6.12):

E =
1

2S̄

∫
S

(
(ℜ[ux])

2 +(ℜ[uy])
2 +

(ℜ[W ])2

a2∗

)
dxdy. (6.40)

where S̄ is the area of the integration region S.
After substituting the dimensionless SFH (6.21) into (6.40) and integrating over

their spatial period we obtain the local variant of norm (6.15):

||q||2 = 1
2
(
|ûx|2 + |ûy|2 + |Ŵ |2

)
. (6.41)

Making use of the vortex solution for SFH (6.37)-(6.39), we get the norm in the
following form:

||q||2 =
[

k̃2
x

K2 +
4+ k2

y

K2 +4q2k2
y

]
I2. (6.42)

Below we shall utilize the growth factor as the main quantity characterizing per-
turbation dynamics:

g(t)≡ ||q(t)||
2

||q(0)||2 , (6.43)

which is, in other words, the norm of a perturbation with respect to its initial value.

• Short-wave perturbations. For ky� 1 we can in any case omit the factor 4 in
(6.42) in the numerator of the second term, the term 4q2k2

y in the denominator of
the second term, as well as the term 2(2−q) = κ2/Ω 2

0 in the quantity K. Then

g≈
k2

x + k2
y

k̃2
x + k2

y
, (6.44)

which is the result obtained in Lominadze et al (1988) (see also formula 4 in
Afshordi et al (2005)). Expression (6.44) shows that SFH initially taken as a
leading spiral with kx < 0 increases in amplitude until time (6.33), and at the
swing moment, when k̃x = 0, reaches maximum in the norm and then decays. The
energy transfer from the background flow to perturbations is described in detail
in terms of fluid particles in Chagelishvili et al (1996) (see Fig. 2 therein). Similar
to the well-known lift-up effect (see the book by Schmid and Henningson (2001),
paragraph 2.3.3 for more detail), it is based on ‘pickup’ of fluid particles by the
main flow as they move into a region with different shear velocity. However, it
also has an important additional ingredient being interaction of particles with
each other at the planes of pressure extrema, resulting in growth of their velocity
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respective to the background flow, even in situations where the lift-up effect does
not work.

6.2.3.1 On the transient growth mechanism

Here we present an additional discussion clarifying the transient growth mecha-
nism. As mentioned in the Introduction and discussed in Section 6.2.2, a differen-
tially rotating flow shortens the length of the leading spiral arms of a transiently
growing vortex until the swing moment (see Fig. 6.2). Due to the barotropicity of
the perturbed flow, the velocity circulation along a fluid contour coinciding with
the spiral arm boundary must be constant. Consequently, the contour shortening
must lead to a compensating increase in gas velocity along the spiral’s boundary.
Consider this suggestion more rigorously in the local space limit (see the scheme
in Fig. 6.3). Let us calculate the velocity circulation for the most simple fluid
contour. Without perturbations, this is naturally a parallelogram with one pair
of sides (call them the base of the parallelogram) along the background stream
lines, i.e. parallel to the y axis and symmetrical on both sides from the level x= 0.
The condition that these sides move synchronously with the fluid automatically
implies that the entire contour is co-moving with the background flow, since the
velocity in the flow is linear in x. Now let us switch to the reference frame co-
moving with the shear, in which the equations (6.23)-(6.25) were written. In this
frame, the background velocity together with the velocity circulation along the
given contour are zero. Next, taking into account small perturbations, the veloc-
ity circulation must change, strictly speaking, for two reasons. Firstly, a velocity
perturbation arises, u (as determined in the shear reference frame), and secondly,
even the contour taken at the time t = 0 as a parallelogram starts being deformed
due to additional shifts caused by perturbations. In the second case, however,
for the small perturbations considered here, only the contribution due to the cor-
responding change in the background velocity circulation will be important. But
this addition is absent, since in the shear reference frame the background velocity
is zero at all points. Thus, all we need to do is to calculate the circulation u along
a contour co-moving with the background flow. At time t = 0 we take it such that
the parallelogram sides coincide with the SFH front lines separated by the phase
π (see Fig. 6.3, where the initial front direction is denoted by the wave vector k0).
As in the shear frame SFH, by definition, has constant space phase front lines, it
is clear that at times t > 0 they remain coinciding with the contour’s sides. Now,
note that we consider the case ky � 1. Therefore Ŵ v → 0, and from (6.25) we
derive the orthogonality condition u ⊥ k. Consequently, the velocity perturba-
tion is directed along the parallelogram’s sides and always points to their going
around. As for the parallelogram’s bases, their contribution to the circulation will
be mutually cancelled, since along them the projection of the velocity u does not
change, while the going around direction becomes opposite. With account for
the above considerations, the perturbed flow circulation in the co-moving shear
frame for the left contour in Fig. 6.3 reads:
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C |t=0 = 2∆y

(
1+

k2
y

k2
x

)1/2

|u|t=0.

For the right contour in Fig. 6.3 taken at the spiral swing moment, we similarly
find:

C |t=ts = 2∆x |u|t=ts .

By equating these two expressions, we see that the circulation conservation law
yields for the vortex SFH with ky� 1:

g(ts) =
|u(ts)|2
|u(0)|2 =

k2
x + k2

y

k2
y

, (6.45)

This coincides with the result following from (6.44) for the spiral swing time.

Fig. 6.3 Illustration of the physical reasons for transient growth of two-dimensional vortices in
the local space limit (see Section 6.2.2). We consider here the case of a short-wave (ky� 1) vortex
SFH with kx < 0. A liquid contour co-moving with the background flow at two instants is shown:
at the initial time t = 0 and at the time of the SFH swing when k̃x = 0. See text (Section 6.2.3.1) for
an explanation of why it is possible to ignore deformation of the contour by perturbations. At t = 0
the contour has the form of a parallelogram with one pair of sides along the y-axis symmetrically
relative to x = 0 and another pair along two SFH fronts, with the phase difference between them
equal to π . Here, u is the velocity perturbation vector, k0 and k show the SFH wave vector at
different time moments. ∆x and ∆y are the parallelogram’s height and base, respectively.

Thus, we have been convinced that the transient growth of a vortex is in fact due
to its perimeter (its ’size’) shortening by the background shear flow with constant
velocity circulation, C = const, along this perimeter. It is important to note that
C , as well as the corresponding vorticity flux, is the measure of the vortex ro-
tation. Therefore, it is appropriate to compare it with a body compressing with
angular momentum conservation, since in that case the body’s angular velocity
increases inversely with the moment of inertia, ωrot ∝ I−1

rot , and the rotation en-
ergy Erot = 1/2Irotω

2
rot ∝ I−1

rot increases with time. In our case, the background
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flow does work on shortening the vortex size and thus transfers it the kinetic
energy.
Finally, note also that as the differential rotation is purely shear, i.e. occurs with
zero divergence of the background flow, the area subtended by the contour con-
sidered above must keep constant. Indeed, the area of the parallelogram is the
product of its base (which is constant since the flow in homogeneous in y) times
its height (which is constant since there is no radial background velocity). There-
fore, due to the constant C and hence the vorticity perturbation flux through the
contour, the vorticity perturbation itself is constant. The same conclusion was
obtained in Section 6.2.2 from the discussion of the invariant (6.26).

6.2.3.2 Estimation of optimal growth

Knowing the physical mechanism of the transient vortex growth, let us return
to expression (6.44) for their growth factor in the case of short azimuthal wave-
length. Clearly, the growth factor of an individual SFH is a function of three
arguments, g = g(kx,ky, t). However, it is possible to consider a more general
characteristic of the transient dynamics which is called the optimal growth of
perturbations G. By definition,

G≡max
∀kx
{g}. (6.46)

Formula (6.46) gives the maximum possible amplification among all vortices
with given ky which can occur during a time interval t. Note that below we will
also employ an analogue to (6.46) used for the global space problem described
by the set of equations (6.8)-(6.10) (see formula (6.94)), where the value G will
be determined for all perturbations with fixed azimuthal wave number m.
There are rigorous mathematical algorithms to search for the optimal growth,
which we will discuss in the next Section. Here, for analytical estimates in the
local space limit, it will be sufficient to recognize that since the growth factor
g(kx,ky, t) of a certain SFH has maximum at k̃x = 0, it is reasonable to suppose
that G can be estimated as

G≈ g(kx =−kyqt), (6.47)

in other words, to adopt that of all SFH with given ky, the harmonics that swings
at time t reaches maximum possible growth by this time.
Making use of definition (6.47), from (6.44) we obtain the simple expression:

G1 ≈ (qt)2, (6.48)

which can be also found in Afshordi et al (2005) (see formula (5) therein). Note
that in that paper corrections to G1 due to non-zero vertical projection of the wave
vector and a finite value of ky were also obtained. As we see, in a sufficiently
long time it is possible to reach arbitrarily large amplitude growth of small-scale
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vortices ky � 1. This growth, however, is power-law and not exponential, as
would be expected from a modal instability of the flow.

• Long-wave perturbations. We now turn to another limiting case where ky� 1
and the azimuthal space period of SFH is much larger than the disc thickness (see
Zhuravlev and Razdoburdin (2014)). In this case, in the second term in (6.42) we
omit k2

y in the numerator and 4q2k2
y in the denominator, and also assume that

K = k̃2
x +κ2/Ω 2

0 . Here, by the condition (6.35), we see that ||q(0)||2 ≈ k−2
x .

Then, for the SFH growth factor we obtain

g≈ k2
x

k̃2
x +4

(k̃2
x +κ2/Ω 2

0 )
2
, (6.49)

This quantity increases for k̃x decreasing with time, i.e., similar to the short-wave
vortices, transient growth occurs for kx < 0. Note that now the maximum g, at-
tained during the spiral swing, is proportional to the square of the value kx itself,
but not to the square of the ratio kx/ky, as in the case of the short wavelength vor-
tices (cf. (6.44)). In addition, another important difference is that now g depends
on the epicyclic frequency as κ−4. Such a strong dependence can be important in
discs with super-Keplerian angular velocity gradient. In thin discs this can occur
in the inner regions of relativistic discs, where κ → 0 when approaching their
inner boundary.
Following the definition (6.47), we obtain from (6.49) the corresponding optimal
growth factor:

G2 ≈
4Ω 4

0
κ4 k2

y(qt)2. (6.50)

Note that both (6.48) and (6.50) are valid only for sufficiently large timespans
since in order to obtain this expression we used the condition kx =−qkyt, but at
the same time the condition kx � 1 must hold, as required by (6.35). Formula
(6.50) shows that for rotation profiles weakly different from Keplerians, when
κ ∼ Ω0, for equal time intervals G2 � G1, since the azimuthal wave number
now explicitly entering the optimal growth factor is small, ky� 1. 7 Therefore,
in the local space limit considered here, small-scale vortices extract energy from
the flow more efficiently than large-scale ones. However, it is interesting to learn
which of them can display the highest growth over the entire time interval. In an
inviscid flow G1,2→ ∞ mostly due to small-scale SFH, as we just noted. Never-
theless, a shear flow can have noticeable effective viscosity due to, for example,
some weak turbulence. Then the dependence G(t) turns out to have a global
maximum Gmax corresponding to the maximum possible non-modal growth of
perturbations irrespective of the time intervals we have considered so far. Phys-
ically, the decrease of G(t) after some long time is related to the fact that more
tightly wound spirals have larger swing times ts. This in turn means smaller ra-

7 In Section 6.4.2 below we calculate G in the global problem (see Fig. 6.14), which implies that
as m→ 1, the difference in the transient growth rate between vortices with azimuthal wavelength
shorter and longer than the disc thickness is significantly smaller.
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dial scale of the perturbations and hence smaller dissipation time of perturbations
due to viscosity. Ultimately, the leading transient spirals faster start decaying than
growing due to unwinding by the flow. It is the value Gmax for cases ky� 1 and
ky� 1 that we would like to compare below.

6.2.3.3 Role of viscosity

The effect of viscosity on the maximum possible transient growth of vortices can
be estimated as follows (an accurate viscosity calculation is a much more compli-
cated problem, which was solved in Razdoburdin and Zhuravlev (2017)). For suffi-
ciently long time intervals qt� 1 we have kx� ky for any of the two limits of ky we
consider. Therefore, in a shearless flow the spiral would decay in the characteristic
viscous time ∆ tν ∼ λ 2

x /ν , where ν is the kinematic viscosity coefficient. Perform-
ing a standard viscosity parametrization using the Shakura-Sunyaev α-parameter,
ν = αa∗H, we get that ∆ tν ∼ (Ω−1

0 αk2
x)
−1 rapidly decreases with increasing |kx|.

At the same time, the larger |kx|, the longer the transient growth time of the spiral,
∆ ttg ∼ |kx/(qky)|. Simultaneously with arising of a shear in the flow, the spiral starts
unwinding, and therefore the viscous dissipation is delayed. Thus, the equality of
these characteristic times, ∆ ttg = ∆ tν , gives the lower limit on the duration of the
transient growth of vortices in a viscous flow. Using it we obtain:

max(∆ ttg)& α
−1/3(qky)

−2/3 (6.51)

It can be verified that expression (6.51) reproduces the estimate made in Afshordi
et al (2005) (see formula (81) therein).

The upper limit on the optimal growth time (6.51) , Gmax ≡ G(max(∆ ttg)), is
given by its inviscid value taken for G1 or G2. We then obtain that for ky� 1

(Gmax)1 ≈ α
−2/3q2/3k−4/3

y , (6.52)

(see also formula (83) in Afshordi et al (2005)). At the same time, for ky� 1 we
have

(Gmax)2 ≈
4Ω 4

0
κ4 α

−2/3q2/3k2/3
y . (6.53)

This result is shown in Fig. 6.4 for some small α and several different shears
q: Keplerian and super-Keplerian. We see that even for the Keplerian shear, when
κ = Ω0, for ky different from 1, (Gmax)2 & (Gmax)1. This occurs because the large-
scale vortices are significantly less dissipative, which more than compensate of their
low growth rate compared to the small-scale vortices. Note also that despite (Gmax)2
decreasing with decreasing ky, this occurs at lower rate compared to the case of
(Gmax)1 decreasing with increasing ky. As a result, the integral transient growth
of large-scale vortices at all ky increases in comparison with small-scale ones. An
even more significant advantage of large-scale vortices appears for super-Keplerian
shears, when q> 3/2, due to (Gmax)2 ∝ κ−4 (see the comment after formula (6.49)).
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Fig. 6.4 Estimate of the maximum possible transient growth of acoustic energy in a disc with
efficient viscosity α = 0.001. The solid, dashed and dotted lines correspond to q = 1.5,1.6 and
1.7, respectively. The three uppermost right and left curves are obtained using formula (6.52) and
(6.53), respectively.

Clearly, the deviation from q = 3/2 by several per cents would increase the transient
growth rate of perturbations by a factor of a few.

As discussed in Zhuravlev and Razdoburdin (2014), the estimate (6.53) is in rea-
sonable agreement with exact calculations of the optimal growth rate in thin discs
in the global space limit for low azimuthal wave numbers m. Thus, large-scale vor-
tices are also able to provide additional transportation of angular momentum to the
periphery of a disc with pre-existing weak turbulence.

In Section 3 we provide a rigorous mathematical justification of algorithms to
search for the most rapidly growing perturbations in shear flows. Such perturba-
tions will be called optimal, and the corresponding amplification, as we already
mentioned, will be referred to as the optimal growth G. The solutions presented in
the Introduction and shown in Fig. 6.1 and 6.2 were obtained using one of these
algorithms. We will also provide another example of calculation of G by solving
the general set of equations (6.8)-(6.10) in a geometrically thin disc (see Fig. 6.14
below). When discussing mathematical aspects of the non-modal dynamics of per-
turbations in shear flows, already in the introductory part to the next section we
will see that the transient growth phenomenon can be treated as a consequence of
non-orthogonality of perturbation modes, which will be evident, in particular, from
consideration of simple analouges presented in Fig. 6.5 and 6.6.
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6.3 Calculation of optimal perturbations

6.3.1 Definition and properties of singular vectors

General solutions to the initial value problem of evolution of small perturba-
tions, as described by the general equations (6.1)-(6.2), supplemented by appro-
priate boundary conditions, can be conveniently studied using abstract concepts
of the functional space of the so-called state vectors of the system, as well as the
notion of linear operators acting on these vectors. In Section 6.2.1, in addition to
the set of equations (6.8)-(6.10), we have already introduced the particular case of
the state vector as a set of azimuthal Fourier harmonics of Eulerian perturbations
q(t)≡ {δvr(r), δvϕ(r), δh(r)}, taken at some fixed instant t. In this section we will
take on the original general case when q(t)≡ {δv(r), δh(r), δρ(r)}.

Let us consider some properties of a dynamical operator Z acting in the Hylbert
space of vectors q and corresponding to the set of equations (6.1)-(6.2). This opera-
tor transforms the initial perturbation vector q(0) to the consecutive vector q(t), i.e.
in the operator form the set of equations can be written as

q(t) = Zq(0). (6.54)

Since the operator Z controls dynamics of linear perturbations in a flow it is often
called dynamical operator. First, let us recall some terms of linear operator theory.

6.3.1.1 Linear operators: from the particular to the general

There are a lot of linear operator types. Let us list those of them that we will need
below, from the more particular to the more general case. We start with positive
definite operators, for which the inner product (Zq,q) > 0 for any vector q. By
definition, the eigenvalues of a positive definite operator are positive. Indeed, by
multiplying the equation Zq = λq with q, we see that its left-hand side is positive,
and the right-hand side is the product of the eigenvalue and a positive value, hence
the positive eigenvalue.

Self-adjoint (Hermitian) operators, which are identical to their adjoint operators,
Z = Z† (Korn and Korn (1968), paragraph 14.4), are most frequently used in differ-
ent physical problems. Eigenvalues of a self-adjoined operator are real values (Korn
and Korn (1968), paragraph 14.8).

In turn, self-adjoined operators are a particular case of normal operators . An op-
erator Z is called normal if it commutes with its adjoint operator: ZZ† = Z†Z (Korn
and Korn (1968), paragraph 14.4). All eigenvalues of a normal operator are complex
conjugates of its adjoint operator’s eigenvalues. Eigenfunctions of the operators Z
and Z† coincide. Additionally, eigenvectors of a normal operator corresponding to
different eigenvalues are orthogonal (Korn and Korn (1968), paragraph 14.8). There-
fore, to calculate the operator norm of these operators, it is sufficient to find their
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eigenvalues. We recall that the norm of an operator Z mapping a Hylbert space H
into itself is the number (Vilenkin et al (1972), Ch. 1)

||Z||= sup
x∈H

||Zx||
||x|| (6.55)

The norm of the dynamical operator is very useful, because it allows us to calculate
the limit of the vector’s norm growth under the action of this operator.

For a normal operator this problem is solved quite easily. To illustrate this, we
(following Schmid (2007)) consider an important particular case in which the oper-
ator Z can be represented as an operator exponent: Z = eAt (see Section 6.3.3.1 for
more detail). The operator A is time-independent, and its eigenvalues are tradition-
ally denoted as {−iω1,−iω2, ...− iωN}, where ω can take both real and complex
values. In this case, eigenvalues of the operator Z are {e−iω1t ,e−iω2t , ...e−iωN t}.

Let us denote the set of eigenvectors of the operator Z as y j. All vectors in the
set y j are orthogonal to each other due to the normality of the operator Z. Moreover,
all these vectors can be considered to be orthonormal. This means that the scalar
product of two different vectors from the set is equal to zero, while the square of
each vector is equal to unity: (y j,yk) = δ jk. We now consider some vector x with
the following decomposition over the eigenvectors of Z: x = ∑ξ jy j. Thus, we get
that

Zx = ∑ξ jy je−iω jt (6.56)

This is the so called spectral representation of a linear operator (see Korn and Korn
(1968)). With the help of this representation, the norm of a normal operator can eas-
ily be found. Since eigenvectors of normal operators are orthonormal, the expression
(6.55) can be rewritten as:

||Z||2 = sup
ξ j

√
∑ξ 2

j e2ℑ [ω j ]t√
∑ξ 2

j

(6.57)

It is easy to see that the maximum value of the operator norm is reached when the
weights of all eigenvectors, except the one corresponding to the maximal imaginary
part of the eigenvalue, vanish.

||Z||= e2ωmaxt , (6.58)

where ωmax =max
j

(ℑ [ω j]). Thus we have shown that to calculate the operator norm

for a normal operator, it is enough to find the eigenvalue with the maximal imaginary
part. However, as will be shown below, the operator for linear perturbations in shear
flows is not normal, so calculating the eigenvalue with the maximal imaginary part
is not sufficient to find the maximal possible growth of perturbations.

Finally, the most general are the non-normal operators , i.e. those that do not
commute with their adjoint operator: ZZ† 6= Z†Z. Eigenvalues of these operators
can be both purely real and complex, and their eigenvectors are non-orthogonal to
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each other. The non-orthogonality of the eigenvectors complicates calculation of
the operator’s norm. For this reason, the energy of a combination of modes is not
equal to the sum of the energy of each mode, i.e. the Parceval rule is not valid and
non-zero cross terms appear. In other words, due to interference in time between
non-orthogonal modes, perturbations described by such an operator can increase
even if there are no growing modes. This energy growth of perturbations, which is
mathematically related to the non-normality of the dynamical operator, was dubbed
the transient growth of perturbations. In the context of stability of hydrodynamical
flows, non-normal operators and examples were discussed in Farrell and Ioannou
(1996a), as well as in Section 3 and 4 of Schmid and Henningson (2001).

The dynamical operator can relate to the different variants described in this sec-
tion for different parameters of the problem. For example in Section 6.3.4.2, we will
show that for solid-state rotation the operator is normal, and for all other rotation
laws – non normal.

6.3.1.2 Simple geometrical example of the non-orthogonality of eigenvectors

Fig. 6.5 The increase in the sum of two non-orthogonal vectors, q = f1 + f2, with decreasing
lengths but conserved angle between each other. It is assumed that q1 = q2 = 1.

A simple geometrical example can illustrate the transient growth mechanism. Let
us introduce two vectors on the plane (x,y) symbolizing two perturbation modes. We
write them in the form of two complex numbers, f1 = f0e−iω1t , f2 = f0e−iω2t+iψ ,
where the numbers ω1,2 can be complex as well. In this form the analogy between
f1,2 and perturbation modes will be the most clear. The real and imaginary part of
each of the vectors f1,2 yields the x- and y- vector components, respectively. Clearly,
ℜ[ω1,2] corresponds to the angular velocity with which both vectors rotate on the
plane, and ℑ[ω]1,2 corresponds to the rate of change of their respective lengths.
Below we will assume that imaginary parts of ω1,2 are negative, which corresponds
to the shortening of f1,2. We recall that in the case of modes, real parts give angular
velocities of the solid-body rotation of the spiral pattern in the flow (see Fig. 6.1),
and imaginary parts give their decay rate, in analogy with a spectrally stable flow.
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In addition, we will assume that at time t = 0 the vectors have the same length f0
and the angle between them is ψ .

Fig. 6.6 The increase in the sum of two non-orthogonal vectors, q = f1 + f2, with conserved
lengths but changing angle between each other. It is assumed that q1 = q2 = 1.

Now take the vector q= f1+f2 and calculate the quantity similar to (6.43), which
gives the rate of change of the square of the length q with time:

g =
e2ℑ[ω1]t + e2ℑ[ω2]t +2eℑ[ω1+ω2]t cos(ℜ[ω1−ω2]t +ψ)

2(1+ cosψ)
. (6.59)

This shows that for angles close to π the denominator in (6.59) is small, and any
insignificant increase in the numerator will lead to a large increase in g. Consider
two particular examples. In the first case assume that ℜ[ω1,2] = 0, and in the second
case that ℑ[ω1,2] = 0. For simplicity, assume cosψ ≈−1+ ε , where ε � 1.

Then for the case ℜ[ω1,2] = 0 we see that if we additionally admit a large differ-
ence in decrements, |ℑ[ω1]| � |ℑ[ω2]|, after some long time g will be

g≈ e2ℑ[ω2]t

2ε
, (6.60)

which corresponds to g� 1 on time intervals such that |ℑ[ω1]t| � 1 but simultane-
ously |ℑ[ω2]t| � 1. This means that despite the decrease in length of each particular
vector, in the case of strong non-orthogonality (which is characterized by strong
difference of ε from 1), their sum exhibits a transient growth up to values ∼ ε−1

(Fig. 6.5). Only at later times will g decrease again at a rate determined by the most
slowly decreasing vector. A similar effect takes place for transient perturbations,
which can be represented as a sum of decaying modes with zero phase velocity.
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In the opposite case ℑ[ω1,2] = 0, from (6.59) the following approximate formula
can be derived:

g≈ 1− cos(ℜ[ω1−ω2]t)
ε

, (6.61)

which is valid when the value of cosine in the numerator is not too close to unity.
Apparently, unlike the example with the sum of non-orthogonal vectors with de-
creasing length (when the length q first increases to a maximum and then monoton-
ically decreases down to zero at t→∞), the length of the sum of the rotating vectors
exhibits an oscillating growth, by returning many times to ever increasing values
∼ ε−1 in equal time intervals ∼ |ℜω1−ℜω2|−1, as is evident from the illustration
in Fig. 6.6. Unlike the first case, it would be inappropriate to refer to this second
possible variant of the mode superposition growth as ‘transient growth’, as we did,
for example when analyzing local SFH in Section 6.2.3. Therefore, it is more ap-
propriate to call it ‘non-modal growth’. One example of such a non-modal growth
of a superposition of neutral modes with non-zero phase velocities is considered in
Section 6.3.2 and was studied in Razdoburdin and Zhuravlev (2012).

6.3.1.3 Singular vectors

We have thus just demonstrated how non-orthogonality of the modes leads to
transient growth of perturbations. In many physical and astrophysical problems, the
evolution of linear perturbations is determined precisely by non-normal operators
with non-orthogonal eigenvectors. Here the non-normality of Z is provided by a
shear in the background flow. We can verify this by deriving the set of adjoint dy-
namical equations corresponding to the action of the adjoint operator Z† (see Sec-
tion 6.3.4.1).

It follows that knowledge of a non-normal operators eigenvalues only is insuf-
ficient to fully describe possible (transient) growth of perturbations in the system.
In addition, the pair inner products (‘angles’) between the eigenvectors on the cho-
sen norm of perturbations must be known. One more potential complication to the
problem with a non-normal dynamical operator is that it becomes impossible to
guarantee the completeness of the set of its eigenvectors, and hence, to guarantee
the adequacy of the solution of the problem when using the eigenvectors as a basis
for decomposition of an arbitrary perturbation.

For all these reasons, in order to compute the maximal transient growth rate of
perturbations, below we will use the technique of singular values and vectors. As
will be shown, the singular vectors form a complete orthonormal set, which allows
us to employ them as a basis to describe the evolution of perturbations. Moreover,
the singular values , unlike eigenvalues, enable us to calculate the perturbation en-
ergy growth at any given time even for non-normal operators.

The non-negative real number σ is called the singular number of a linear operator
Z if there are such vectors u and v of unit length that
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Zv = σu

Z†u = σv
(6.62)

The vectors u and v are called the left and right singular vectors, respectively, cor-
responding to the singular value σ .

Note that the singular values and vectors are related to the eigenvalues and eigen-
vectors of the composed self-adjoint operators ZZ† and Z†Z. To see this, let the
operator Z† act on vector Zv and the operator Z act on vector Z†u and then use the
definition (6.62):

Z† (Zv) = Z† (σu) = σZ†u = σ
2v (6.63)

Z
(
Z†u

)
= Z(σv) = σZv = σ

2u (6.64)

Thus, vectors v and u are eigenvectors of the operators Z†Z and ZZ†, respec-
tively. And since they are eigenvectors of self-adjoint operators, they form a com-
plete orthonormal set of functions. The squares of the singular values are eigenval-
ues of the composite operators.

The operators ZZ† and Z†Z are positive definite, since for any vector f the in-
equalities

(
f,ZZ†f

)
=
(
Z†f,Z†f

)
> 0 and

(
f,Z†Zf

)
= (Zf,Zf)> 0 hold. And since

all eigenvalues of a positive definite operator are positive, the singular values are
real.

Now, if we rewrite the expression for the operator norm (6.55) with the help of
definition (6.62) for some unit norm vector x decomposed over an orthogonal set of
singular vectors: x = ∑

j
ξ jv j

||Z||2 = sup
ξ j

||∑
j

ξ jσ ju j||2 = sup
ξ j

∑
j
(ξ jσ j)

2 = max
j

σ
2
j (6.65)

Thus, the norm of the operator Z is limited by the maximum singular value of this
operator. Going back to the dynamics of perturbations, we conclude that the maxi-
mal growth of a perturbation is limited by the maximal singular value of the dynam-
ical operator. In most physical problems, it is natural to assume that the maximal
singular value is finite (i.e. the perturbation can not demonstrate infinite growth dur-
ing a finite time interval), and the set of singular values is discrete.

The singular values and corresponding singular vectors are usually numbered in
order of decrease (see Golub and Reinsch (1970)). So, the growth of a perturbation
is limited by the first singular value of the corresponding dynamic operator, and the
first singular vector is the perturbation that exhibit such a growth.

The above considerations imply that to calculate the maximum possible perturba-
tion growth rate it is sufficient to calculate the first singular value, called the optimal
growth in the literature, and the right singular vector corresponding to this value
will be the sought for (optimal) perturbation demonstrating the maximum possible
growth rate. Below we present two methods of calculation of singular values and
corresponding singular vectors.
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6.3.2 The matrix method for optimal solutions

The first method to calculate singular vectors will be referred to here as the matrix
method. It is based on singular value decomposition of the matrix of a dynamical
operator. As a rule, the set of eigenvectors is used as the basis for the matrix calcu-
lation.

Note that there is another possible variant, which was used, for example, in Ioan-
nou and Kakouris (2001), when the space is covered by a grid of points, and each
perturbation is given by a column of numbers corresponding to the values of the per-
turbation at these points. A dynamical operator corresponds to a matrix obtained by
a difference approximation to the derivatives in the dynamical equations. A singular-
value decomposition of this matrix enables us to calculate the singular vectors at the
grid points. The large size of the operator matrix is a shortcoming of this approach,
which requires a lot of time to calculate the singular value decomposition. An ad-
vantage is that it is not necessary to calculate the operator’s eigenvectors. In this
section, we describe the matrix method in the eigenvector basis.

The problem is to find the linear combination of the dynamical operator modes
whose norm exhibits the largest growth by the given time. Assume that the sequence
of eigenvectors {f1, f2, f3...fN} and the corresponding eigenvalues {e−iω1t ,e−iω2t ,e−iω3t ...e−iωN t)}
of the operator Z are known. In the space of linear combinations of eigenvectors, the
representation of an arbitrary perturbation vector has the form (see paragraph 4.3.2
and Section 4.4. in Schmid and Henningson (2001) for more detail)

q =
N

∑
j=1

κ
j f̂ j, (6.66)

where the numbers {κ1,κ2,κ3...κN} are coordinates of the vector q in the eigen-
vector basis. Note that the time dependence of q is essentially in its coordinates.

The inner product of two vectors q and g in this representation can be calculated
from the known coordinates using the metric matrix M:

(q,g) = ∑
i, j

(
q†)i

Mi jg j, (6.67)

where the elements of the metric matrix are equal to the inner product of the eigen-
vectors:

Mi j = (fi, f j) (6.68)

Note that the matrix M is positive definite.
Now the problem of calculation of the maximum possible perturbation growth

is reduced to finding the values κ j for which the growth of the perturbation norm,
determined using these values according to formula (6.66), is maximal at the given
moment in time.

The representation of an operator Z in the eigenvector basis can be easily calcu-
lated by letting this operator act on the basis element:
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Zf j = f j(τ) = e−iω jτ f j, (6.69)

Therefore, in the set of basis eigenvectors, an operator can be represented by a diago-
nal matrix P with complex exponents on the main diagonal: P= diag{e−iω1τ ,e−iω2τ ,e−iω3τ ...e−iωN τ}

Next, let us use the first equality from definition (6.62), Zv = σu, and rewrite it
in the matrix form:

P = U V−1 (6.70)

The matrix is diagonal with the singular values on the diagonal, = diag{σ1,σ2,σ3...σN}.
Columns of matrices U and V represent right and left singular vectors, respectively.

Now let us write the inner product for two arbitrary singular vectors q and g as

(q,g) = ∑
i, j

(
q†)i

Mi jg j = ∑
i

(
(Fq)†)i

(Fg)i, (6.71)

where the matrix F is the Cholesky decomposition of the metric matrix M = FT F
(for a more detailed description of this decomposition see for example Sect. 4.2 in
Golub and Van Loan (1996)). As the matrix M is positive definite, its Cholesky
decomposition always exists and is unique.

Sets of singular vectors are orthonormal. Therefore the following relations for
matrices V and U hold:

V†FT FV = I, (6.72)

U†FT FU = I, (6.73)

where I is the identity matrix.
Thus, matrices inverse to V and U are expressed through Hermitian-conjugate as

follows:
V−1 = V†FT F, (6.74)

U−1 = U†FT F. (6.75)

Making use of these relations in (6.70) yields

P = U V†FT F = F−1FU V†FT F. (6.76)

Rewrite this in the form:

FPF−1 = (FU) (FV)† ≡ Ũ Ṽ†. (6.77)

Now it is clear that the right-hand side of this equality becomes the same as
the so-called singular value decomposition (SVD) of the matrix FPF−1. Recall that
the singular value decomposition is a factorization of a matrix in the form Ũ Ṽ†

where Ũ and Ṽ are orthogonal matrices and is a diagonal matrix with positive
numbers on the main diagonal (see Golub and Van Loan (1996) for more details).
This factorization exists for any real matrix and is unique. It is easy to be convinced
that the matrices Ũ, Ṽ and satisfy the singular value decomposition conditions,
and therefore to calculate singular values and vectors it is sufficient to perform this
decomposition for the matrix FPF−1. The singular value decomposition procedure
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is a standard tool in many linear algebra software packages (for example in the GNU
Scientific Library).

The original matrices U and V are calculated using F−1: U = F−1Ũ, V = F−1Ṽ.
The maximum number on the diagonal of the matrix is the first singular value at
time t, and the corresponding column of the matrix V is the first singular vector in
the eigenvector basis.

6.3.2.1 Illustration of the matrix method

The matrix method has been used in many studies on stability of laboratory flows
(see, for example, Butler and Farrell (1992), Reddy and Henningson (1993), Han-
ifi et al (1996), Meseguer (2002), Malik et al (2006), Maretzke et al (2014)) and
in astrophysical papers Yecko (2004), Mukhopadhyay et al (2005), Zhuravlev and
Shakura (2009). Here, we elucidate it by a simple semi-analytical study Razdobur-
din and Zhuravlev (2012), where the eigenvector basis 8 is calculated in the WKB
approximation in a geometrically thin and barotropic quasi-Keplerian torus with
free boundaries. For simplicity, only the modes whose corotation radius is outside
the outer boundary of the torus are considered. (See Section 6.2.1 for a discussion of
the mechanism of energy exchange between the modes and the background flow at
the corotation radius in the context of the spectral problem corresponding to equa-
tions (6.8)-(6.10)). When the corotation radius is outside the flow, the energy of
the modes is conserved. This means that they do not show exponential growth or
decay, i.e. their frequencies ω are real values (see expression (6.14)). These per-
turbations are referred to as neutral modes. Nevertheless, due to their mutual non-
orthogonality, in other words, due to the non-orthogonality of the eigenvectors of the
the dynamical operator acting on the perturbations, we expect a non-modal growth
of their linear combinations (see the analogy in Fig. 6.6 and comments to it in the
text).

The modes we wish to obtain below physically correspond to inertial-acoustic
waves, which form a solid-body rotating pattern in the disc, i.e. whose azimuthal
projection of the wave vector that is constant in time and space. Here, as will be
seen from the WKB analysis, their characteristic radial wavelength is close to the
disc thickness H. As for their characteristic azimuthal scale, λϕ , it can be both larger
and smaller than H, determined by the azimuthal wave number m entering the set of
equations (6.8)-(6.10). Results concerning the optimal perturbation growth will be
presented for the case λϕ � H (see Fig. 6.8).

We will see that in that case the optimal perturbation does not have the form
of a spiral unwound by the flow, which we discussed in the context of the tran-
sient growth of vortices (see Fig. 6.2), but is a wave packet initially located at the
outer boundary of the torus and further propagating towards its inner boundary. At
the moment of reflection from the inner boundary, its total acoustic energy reaches
maximum and then decreases while the packet goes back to the flow periphery. After

8 Henceforth, the eigenvectors of an operator Z multiplied by the eigenvalues, i.e. by the time
dependence e−iωt , will be referred to as perturbation modes.
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reflection from the outer boundary the process repeats. Thus, the non-modal growth
in this case is oscillating rather than transient, as must be the case according to the
analogy shown in Fig. 6.6.

6.3.2.2 Background flow

Consider a toroidal flow of finite radial size as a model background flow. The
azimuthal velocity component will correspond to the power-law angular velocity
radial profile:

Ω = Ω0

(
r
r0

)−q

, (6.78)

where r0 is the distance to the gravitating centre in the equatorial plane of the torus
at which rotation has the Keplerian frequency Ω0, 2 > q > 3/2. Assume that matter
moves in the external Newtonian gravitational potential produced by a central point-
like mass:

Φ =− Ω 2
0 r3

0

(r2 + z2)1/2 .

As will be clear below, in this case the parameter q characterizes the torus thickness
which approaches zero as the angular velocity profile becomes close to Keplerian.
As in Section 6.2.1, we use here the polytropic equation of state and write the force
balance using the enthalpy h:

∂h
∂ r

= Ω
2r− ∂Φ

∂ r
,

∂h
∂ z

=−∂Φ

∂ z
,

(6.79)

where the first and the second equations correspond to the projection of the Euler
equation on the radial and vertical direction, respectively. The joint integration of
(6.79) yields

h(r,z) =
Ω 2

0 r3
0

(r2 + z2)1/2 +
Ω 2

0 r2q
0

2(1−q)
r2(1−q)+C,

where the integration constant C is determined from the condition that h(r1,0) = 0
at the inner boundary of the torus r1 < r0.

Then, in dimensionless coordinates x̂≡ r/r0, ŷ≡ z/r0 we obtain

h = (Ω0r0)
2
[
(x̂2 + ŷ2)−1/2− x̂−1

1 +
1

2(q−1)

(
x̂−2(q−1)

1 − x̂−2(q−1)
)]

. (6.80)

Here x̂1 ≡ r1/r0. The enthalpy distribution (6.80) also gives the outer radial bound-
ary of the torus x̂2 > 1, where h(x̂2,0) = 0. The quantity x̂d = x̂2− x̂1 will be called
the radial extension of the flow.
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Now it is not difficult to move to the case of the quasi-Keplerian, geometrically
thin torus of interest here: q = 3

2 +
ε2

2 , ε � 1. Using this assumption, the enthalpy
profile can be simplified to

h
Ω 2

0 r2
0
=

Ĥ2

2x̂3

[
1−
(

ŷ
Ĥ

)2
]
, (6.81)

where Ĥ(x) is the dimensionless thickness of the torus in units of r0:

Ĥ = δ x̂
[

x̂1(1+ ln x̂)− x̂(1+ ln x̂1)

x̂1−1− ln x̂1

]1/2

(6.82)

Here, we have introduced a descriptive small parameter

δ ≡ Ĥ(x̂ = 1) = 21/2
ε

(
1− 1+ ln x̂1

x̂1

)1/2

� 1,

that defines the characteristic aspect ratio of the disc-like torus with δ � x̂d . It is not
difficult to make sure that expression (6.81) is equivalent to (6.4).

Equations (6.81), (6.82) fully determine the quasi-Keplerian background flow
which will be used to illustrate the matrix method of determination of the non-
modal growth of the superposition of modes. In the next section, we will solve the
spectral problem for such a flow, i.e. we will find the perturbation mode profiles.

6.3.2.3 Modes

Modes are non-stationary perturbations with exponential time dependence ∝

exp(−iωt). They are also solutions to the operator equation (6.54) determining evo-
lution of a linear perturbation in the flow. This means that modes are state vectors
which we obtain by the operator Z acting on its eigenvectors fi:

fi(t) = Zfi = e−iωt fi.

Again, the numbers exp(−iωt) are eigenvalues of Z that we will need to find along
with its eigenvectors.

In practice, we will not use the equation exactly in the form (6.54), but instead
derive an equivalent ordinary differential equation of the second order in the radial
coordinate for an Eulerian enthalpy perturbation. As everywhere in this chapter, we
will assume that hydrostatic equilibrium always holds, i.e. that δvz = 0. As we deal
with a thin torus, δ � 1, our perturbations taken originally in the form of azimuthal
Fourier harmonics ∝ exp(imϕ) satisfy the set of equations (6.8)-(6.10), which con-
tains the background variables integrated over z (see Section 6.2.1). The modal anal-
ysis implies the substitution ∂/∂ t → iω , after which from (6.8) and (6.9) we find
that complex Fourier harmonics of the Eulerian velocity perturbations, which are



6 Transient dynamics of perturbations in astrophysical disks 289

denoted here as vr and vϕ , are expressed through the Fourier harmonics of the en-
thalpy perturbation, which is denoted here as W, as follows:

vr =
i
D

[
ω̄

dW
dx̂
− 2mΩW

x̂

]
, (6.83)

vϕ =
1
D

[
κ2

2Ω

dW
dx̂
− mω̄W

x̂

]
, (6.84)

where D ≡ κ2 − ω̄2, κ2 = 2Ω

x
d
dx̂

(
Ω x̂2

)
is, as usually, the epicyclic frequency

squared, and ω̄ ≡ ω −mΩ is the shifted frequency. Below in this section we as-
sume that all frequencies are in units of the frequency Ω0 and time is in units of
Ω
−1
0 .
Plugging (6.83) and (7.42) into the continuity equation (6.10), we obtain the

following equation for W:

D
x̂Σ

d
dx̂

(
x̂Σ

D
dW
dx̂

)
−
[

2m
ω̄

D
x̂Σ

d
dx̂

(
ΩΣ

D

)
+(n+1/2)

D
h∗

+
m2

x̂2

]
W = 0, (6.85)

where

Σ (r) =
H∫
−H

ρdz ∝ Ĥ
(

Ĥ2

x̂3

)n

and h∗ =
Ĥ2

2x̂3 . (6.86)

Here h∗ is the dimensionless background enthalpy in the equatorial disc plane (cf.
(6.81)). To reproduce the surface density dependence on r given above, Σ(r), it is
enough to recall that Σ ∼ Hρ|z=0, and ρ ∼ hn for a polytropic equation of state.
Equation (6.85), as well as its more general analogue for three-dimensional per-
turbation modes, is often used in the literature. Their derivation and analysis can
be found, for example, in papers Goldreich et al (1986), Kato (1987), Sekiya and
Miyama (1988), Kojima (1989), Kato (2001).

As we have already mentioned, the integration of equation (6.85) is complicated
by resonances: corotational, where ω̄ = 0, and Lindblad resonances, where D =
0. These points are singular for (6.85). However, in order to illustrate the matrix
method of optimization, we will restrict ourselves to calculation of only part of
the modes with resonances lying outside the outer boundary of the flow, x̂2. The
condition that the inner Lindblad resonance lies at x̂ > x̂2 implies

ω < (m−1)Ω(x̂2), (6.87)

where in the condition D = 0 we have set κ ≈Ω due to the nearly Keplerian angular
velocity profile in a thin torus. Recall also that ω is a real value. Note that for m = 1
the inner Lindblad resonance is at x̂ = 0, and hence there are no modes with m = 1
satisfying the condition (6.87). For this reason, we will consider only modes with
m > 1. Thus, under the restrictions made, the term ∝ D/h∗ ∼ δ−2 will be large
everywhere in the flow, and therefore the solution to the equation can be found in
the WKB approximation.
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A WKB solution to equation (6.85) can be written as

W = C0S1 cos(S0 +ϕ0), (6.88)

in which S0 ∼ δ−1, and S1 ∼ δ 0.
Plugging (6.88) into (6.85) yields its decomposition in δ . By collecting terms

with similar powers of δ , namely, δ−2 and δ−1, we find the explicit form of func-
tions S0 and S1:

S0 =

x̂∫
x̂1

(
(n+1/2)

−D
h∗
− m2

x̂2

)1/2

dx̂,

S1 =

(−D
x̂Σ

)1/2(
(n+1/2)

−D
h∗
− m2

x̂2

)−1/4

.

The phase ϕ0 is fixed by the boundary conditions.
The WKB solution (6.88) is irregular at the boundary points x̂1 and x̂2 at which

h∗→ 0. It is possible to find a WKB-solution that is regular at the boundaries (see
Heading (2013)), but here, let us use another common way of matching (6.88) with
an approximate regular solution to the original equation (6.85) near x̂1 and x̂2. This
matching should yield a discrete set of eigenfrequencies ω , as well as the value of
ϕ0.

In order to find the regular solution near x̂1 and x̂2, we change to the new radial
coordinate x̃≡ |x̂− x̂1,2| and expand equation (6.85) in the main order of the variable
x̃� 1. Technically, this means that all variables from (6.85) that are non-zero at
x̂1,2 are set to their exact values at x̂1,2. The disc semi-thickness, vanishing at the
boundaries, is approximated as Ĥ = Ĥ1,2x̃1/2. Here for the constant Ĥ1,2 we get

Ĥ1,2 = δ x̂1,2

∣∣∣∣ ln x̂1,2

1+ ln x̂1,2− x̂1,2

∣∣∣∣1/2

We obtain the following near-boundary equation:

x̃
d2W
dx̃2 +(n+1/2)

dW
dx̃

+E1,2W = 0, (6.89)

where E1,2 =
(2n+1)(−D1,2) x̂3

1,2

H2
1,2

, D1,2 - are the values of D at points x̂1,2.

The regular solution to (6.89) at x̃ = 0 has the form:

W = C1,2 x̃−(2n−1)/4 Jn−1/2(z̃), (6.90)

where z̃ = 2E1/2
1,2 x̃1/2.
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Note that equation (6.89) at x̃→ 0 is equivalent to the boundary condition for
the enthalpy perturbation at the free boundary of the flow, which states that the
Lagrangian enthalpy perturbation vanishes at the boundary points x̂1,2, ∆h|x1,2 = 0
(see, for example Glatzel (1987)).

As the denominator z̃ contains the small δ , at some distance from the bound-
ary points z̃� 1 yet under the condition x̃� 1. In this region, W is given by the
asymptotic of (6.90) for large arguments:

W≈ C1,2 x̃−n/2(4π
2E1,2)

−1/4 cos
(

2E1/2
1,2 x̃1/2−nπ/2

)
(6.91)
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Fig. 6.7 In this figure solutions within different parts of the torus are shown. The solid line denotes
a solution (6.90), and the dotted line a WKB-solution. The right panel shows the right borderland
of the torus. The WKB solution has an infinite derivative in this region, so the solution (6.90) is
regular here. On the left panel a larger region is shown. When the distance from the boundary
x2 is increasing, the differences between the two solutions become more significant. However,
in a certain region both of the solutions are very similar. The following parameters were used:
δ = 0.003, n = 1.5, m = 10, xd = 2.0.

The matching of (6.91) and the WKB solution yields the zero phase ϕ0 =−nπ/2
in equation (6.88) and the following dispersion equation:

x̂2∫
x̂1

(
(2n+1)

−Dx̂3

Ĥ2
− m2

x̂2

)1/2

dx̂ = π(n+ p), (6.92)

where p is an integer number. Solving (6.92) for different p yields a discrete set of
ω that enters D. This is the sequence of eigenfrequencies of neutral modes that we
are interested in.

The modes profiles are given by equations (6.88) and (6.90) with account for the
relations between the corresponding constants:
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C0

C1
=

(
Ĥ2n+1

1

2π x̂3n−1
1 (−D1)

)1/2

,
C2

C1
= (−1)p

[(
x̂2

x̂1

)3n−1 D2

D1

(
Ĥ1

Ĥ2

)2n+1
]1/2

(6.93)
After obtaining the profile W(x̂) for a given ωi, the corresponding complex

Fourier harmonics of the Eulerian velocity perturbations vr(x̂) and vϕ(x̂) can be cal-
culated from (6.83) and (7.42). Thus, we find the whole eigenvector fi≡{vr, vϕ , W}
of operator Z corresponding to its eigenvalue exp(−iωit).

6.3.2.4 Optimal growth
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Fig. 6.8 The left panel shows the optimal growth curve G(t) (the solid curve) of a linear com-
bination of slow modes in a thin disc for δ = 0.002. The dashed lines show the growth factor of
the total acoustic energy g(t) of the particular optimal perturbations as a function of time. These
perturbations are optimal for time intervals t = 250,290,390 expressed in units of the character-
istic Keplerian period 2πΩ

−1
0 . The right panel shows curves of G(t) only . The solid, dashed and

dotted lines correspond to δ = 0.001,0.002,0.003, respectively. The linear combination shown
has the dimensionality N = 20, parameters are xd = 1.0, m = 25, n = 3/2 (Figure is quoted from
Razdoburdin and Zhuravlev (2012)).

The explicit form of eigenvectors of a dynamical operator allows us to calculate
the optimal growth, i.e. to find the linear combination of these vectors that demon-
strates the maximum increase of the norm at a given time. The optimal growth at
the time t is

G(t) = max
q(0)

||q(t)||2
||q(0)||2 . (6.94)

This is a generalization of (6.46) for the spatially global case.
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The inner product of two vectors from the linear span of N eigenvectors of Z
is introduced such that the square of the corresponding norm recovers the acoustic
energy of the perturbation (6.15):

(f,g) = π

r2∫
r1

Σ

(
(vr) f (vr)

∗
g +(vϕ) f (vϕ)

∗
g +(n+1/2)

(W ) f (W )∗g
h∗

)
rdr, (6.95)

where the indices ′ f ′ or ′g′ indicate the relation of some physical variable to the
vector f or g, respectively. We recall that by vr, vϕ and W here we mean azimuthal
Fourier harmonics of the Eulerian perturbations of the velocity and enthalpy com-
ponents, respectively.

Now, let us apply the procedure of calculation of the optimal combination of
eigenvectors described above. As we have the eigenvectors in analytical form, the
matrix M can be obtained by simple numerical integration of a combination of ele-
mentary functions using the inner product formula (6.95):

Mi j = (fi, f j) (6.96)

Next, we perform the Cholesky decomposition M=FT F and then the singular value
decomposition of the matrix FPF−1. Both these procedures are standard in numeri-
cal methods of matrix algebra.

In Fig. 6.8 we show an example of the dependence of the maximum possible
energy growth, G(t), among all superpositions of 20 neutral modes at time t, on a
time scale of the order of the sonic time ts ∼ (δΩ0)

−1 and ∼ 10ts, respectively. The
left panel of Fig. 6.8 also shows the energy growth of the optimal mode combina-
tions g(t). Clearly, the curves g(t) touch the general optimal growth curve G(t), as
must be the case, each at its own optimization time. The optimal growth itself in this
model has a quasi-periodic form by reaching maxima at times ∼ ts, and the thinner
the torus, the higher values g the mode superposition can reach.

6.3.2.5 The angular momentum flux

In Section 6.3.2.4 we have shown that some combinations of modes can demon-
strate a significant growth in acoustic energy. Consider in more detail what this
optimal perturbation is. The perturbation amplitude growth suggests that the main
flow transfers energy to perturbations. The first term on the right-hand side of (6.13)
is responsible for this, and its integrand sometimes is referred to as the Reynolds
stress (which we denote as FR, see Kojima (1989)). It turns out that FR is simply re-
lated to the density of the specific angular momentum flux excited by perturbations,
F : FR =− dΩ

dx̂ F (see Sections 2.3 and 4 of Savonije and Heemskerk (1990)). Clearly,
for Keplerian rotation, FR and F have the same sign: if the perturbation energy in-
creases, F > 0, angular momentum flux to the torus periphery takes place, and vice
versa.
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Fig. 6.9 Radial profiles of the azimuthally averaged angular momentum flux density F of the
optimal perturbation, which corresponds to g(t) shown in Fig. 6.8a for the optimization time t =
290. (a) Profiles of F at the instants t = 50,100,150,200,240 before the g(t) maximum. Each
profile has one large maximum shifting from the outer disc boundary x2 to the inner disc boundary
x1 as t increases. (b) Profiles of F at the instants t = 290,350,400,450 after the g(t) maximum.
Correspondingly, each profile has one large minimum shifting from the inner disc boundary x1 to
the outer disc boundary x2 as t increases further. The linear combination has the dimensionality
N = 20, and the parameters are δ = 0.002, xd = 1.0, m = 25, n = 3/2. (Figure from Razdoburdin
and Zhuravlev (2012).)

In order to calculate the evolution of the profile F for the optimal superposition of
modes represented by the curve g(t) for t = 290 in Fig. 6.8, let us use the following
expression for F

F = x̂Σ < δvrδvϕ > . (6.97)

Figure 6.9 shows how the radial distribution of F changes in the interval (x̂1, x̂2).
At first, we see that F is radially localized, and its localization region changes with
time: during the perturbation growth phase it shifts towards the inner torus boundary,
whereas during the perturbation decay phase it moves back to the outer boundary.
Therefore, in this case the non-modal growing perturbation is represented by a wave
packet containing a set of neutral modes (each of the modes, as we recall, rotates
like a solid body with an angular velocity somewhat smaller than the angular ve-
locity of the flow). Initially, this wave packet is localized near the outer boundary
of the torus and moves towards the inner boundary. This causes outflow of angular
momentum to the disc periphery, since F > 0, and its acoustic energy increases. At
the moment of reflection from the inner boundary, the sign of F and the direction
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of motion of the wave packet reverse, which later leads to a decrease in its acoustic
energy, and the angular momentum flows back to the inner parts of the torus. As
there is no viscous dissipation and the background flow is stationary, obviously, the
evolution of the optimal perturbation will continue to repeat itself: the wave packet,
after reflecting from the outer boundary, will go back towards the inner boundary.
Note also that the obtained shape of G(t) suggests that during the evolution of this
particular type of perturbations there are epochs (time intervals counted from the
conventional start of the perturbation evolution) when there is no combination of
modes to be amplified. These epochs correspond to minima on the curve G(t) (see
Fig. 6.8). The reason is that only the wave packets localized near the outer disc
boundary can exhibit significant growth. At the same time, the velocity of their ra-
dial motion is determined by the sound velocity in the flow, and hence the time
intervals ‘favourable’ for non-modal growth always take the value ∼ x̂d/δ .

If we plot the lines of constant phase of perturbations corresponding to the op-
timal wave packet on the plane (r,ϕ), it turns out that at the growth stage it cor-
responds to a trailing spiral. It is opened at the initial time, but while propagating
towards the inner boundary it winds up stronger and stronger. Oppositely, after the
reflection from the inner boundary, it transforms into a tightly wound leading spiral,
and while moving back towards the outer boundary the degree of winding gradually
decreases. This behavior of the optimal perturbation is similar to the process of en-
hancement/weakening of the shear density waves by a shear flow we discussed in
Section 6.2.2 in the context of the spatially local problem.

The rate of spiral twist is controlled by the dynamical time-scale, while the rate
of radial drift – by the time-scale of sound. Thus for smaller δ , the spiral manages
to be twisted more strongly during the drift from the outer to the inner boundary.
For that reason a decrease of δ (see figure 6.8) leads to an increase of the maximal
factor of transient amplification.

6.3.3 Alternative: a variational approach

Singular vectors can be found alternatively by a variational method . This method
represents a generalization of the power iterations procedure of looking for matrix
eigenvalues and eigenvectors in a finite dimensional framework (see, for example,
the monograph by Golub and Van Loan (1996)). The variational method requires
less computational power than the matrix method Luchini (2000), and, importantly,
it can be applied to non-stationary background flows, as well as used to solve the
non-linear problem of transient dynamics of finite-amplitude perturbations. Unlike
the matrix method, it does not require discrete representation of the dynamical op-
erator, i.e., for example the decomposition of perturbations by eigenvectors, whose
computation in a shear flow faces the known difficulty while bypassing the corota-
tion and Lindblad resonances (see Lin (1955)).

As for linear dynamics, the variational method turns out to be equivalent to solv-
ing the more simple problem of seeking the maximum eigenvalue of the operator
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Z†Z (see Section 6.3.1 and, for example, Andersson et al (1999) as well). That is
why we start with solving exactly that problem, whereas a derivation of the vari-
ational method itself, directly from the variational principle, will be given below
together with a generalization to the non-linear case.

6.3.3.1 Linear autonomous operators

In Section 6.3.1, after the singular values were introduced, we discussed that
the first singular value is simultaneously the maximum eigenvalue of the composite
operator Z†Z, and the first right singular vector is the corresponding eigenvector of
this operator. First, let us try to understand what the action of Z†Z on the initial state
vector q(0) is equivalent to. Here, the action of the first (right) part of the composite
operator is known from its definition (6.54): this is the integration of the equations
of perturbation dynamics, for example, the set (6.8)-(6.10), until time t starting from
the initial condition q(0). We symbolically rewrite this as

∂q
∂ t

= Aq. (6.98)

Note that due to the linearity of the problem, the operator A in (6.98) does not
depend on q itself.

The subsequent action of the operator Z† on q(t) is not difficult to understand
if the operator A is autonomous, i.e. time-independent (see Farrell and Ioannou
(1996a)).

Then, the integration of (6.98) can be written in the operator form: q(t) =
eAtq(0), i.e. A and Z are related as

Z = eAt . (6.99)

The right-hand side of (6.99) is called the operator exponent and should be under-
stood as an infinite series I+At +(At)2/2+ ....

The operator adjoint to Z can also be written through the operator exponent Z† =

eA†t, where A† is the operator adjoint to A. A† is defined by the Lagrange relation
(Aq, q̃) =

(
q,A†q̃

)
, where q and q̃ are arbitrary vectors. This expression for Z†

follows from the application of the conjugation operation to the infinite operator
series given above. Now consider the inner product:(

∂q
∂ t

, q̃
)
= (Aq, q̃) =

(
q,A†q̃

)
. (6.100)

On the other hand,
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∂q
∂ t

, q̃
)
=

∂

∂ t
(q, q̃)−

(
q,

∂ q̃
∂ t

)
=

∂

∂ t

(
eAtq(0), q̃

)
−
(

q,
∂ q̃
∂ t

)
=(

q(0),
∂

∂ t

(
eA†t q̃

))
−
(

q,
∂ q̃
∂ t

)
.

(6.101)

Combining (6.100) and (6.101) yields the identity:(
q(0),

∂

∂ t

(
eA†t q̃

))
−
(

q,
∂ q̃
∂ t

)
=
(
q,A†q̃

)
. (6.102)

It is easy to see that if q̃ and ∂ q̃
∂ t are related as

∂ q̃
∂ t

=−A†q̃, (6.103)

then q̃(t) = e−A†tq̃(0) and the identity (6.102) is fulfilled for an arbitrary q.
Thus, the action of operator Z† = eA†t is equivalent to integration of equation

(6.103) backwards in time from the instant t with initial condition q(t) down to the
instant t = 0. Equation (6.103) is called the adjoint equation .

Additionally, note that although the operator Z can be represented as Z = eAt and
Z† as Z† = eA†t, the composite operator cannot be represented as Z†Z = e(A+A†)t.
In order to see this, it is sufficient to employ the series expansion of those operators.

Thus, the action of the composite operator Z†Z on the initial vector q(0) is equiv-
alent to integration of the original equation (6.98) with the initial condition q(0)
forwards in time up to the instant t, and to subsequent integration of the adjoint
equation (6.103) with the initial condition in the form of the vector q(t) we have
just obtained by integrating (6.98) — backwards in time down to t = 0.

If the action of the composite operator Z†Z on some vector is equivalent to its
multiplication by a constant, this vector is a right singular vector of Z, and the con-
stant is the square of the corresponding singular value: Z†Zv = σ2v. However, we
need only the first, i.e. the largest, right singular vector. In order to obtain it, consider
an iteration procedure with one step consisting of action by the composite operator
Z†Z with subsequent normalization of the result to unity. To show convergence of
iterations to the first singular vector, consider the decomposition of an arbitrary state

vector over the singular vectors q(0) =
∞

∑
k=1

qkvk(0) and let it be acted on by the iter-

ation operator: Z†Zq(0) =
∞

∑
k=1

σ2
k qkvk(0).

Obviously, the iteration operator increases the weight of each singular vector in
proportion to the square of its singular value. Thus, the limit

(
Z†Z

)p→∞ q(0), where
p is a natural number, for an arbitrary initial state vector q(0) is equal to the first
right singular vector, since it corresponds to the maximum singular value. The rate
of divergence depends on the difference between the singular vectors.

Note that in order to converge exactly to the first singular vector, the initial ap-
proximation should not be orthogonal to it, so that in the decomposition of the vector
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q(0) the weight of the first singular vector is non-zero, q1 6= 0. Otherwise, the action
of the iteration operator will not increase this weight: σ2

1 q1 = 0. In the latter case,
the iteration scheme will converge to the singular vector with the largest singular
value among all vectors that have non-zero weight in the initial decomposition.

After all remarks, we would like to stress once again that in order to find the first
right singular vector it is necessary to apply an iteration procedure, which includes
the integration of the original equation (6.98) forwards in time and of the adjoint
equation (6.103) — backwards in time with the subsequent normalization to unity
in each iteration step.

6.3.3.2 Linear non-autonomous operators

In the case of a time-dependent operator A (so-called non-autonomous opera-
tor, see Farrell and Ioannou (1996b)), the action of operator Z† also corresponds to
integration of equation (6.103) backwards in time, which can be verified as follows.

For the non-autonomous operator A, the action of operator Z can be factorized
as a product of actions of infinitesimal operators:

Z(τ) = lim
n→∞

n

∏
j=1

eA(t j)δ t , (6.104)

where δ t = τ/n; ( j−1)δ t < t j < jδ t, see Farrell and Ioannou (1996b).
The conjugation of the product of operators yields

Z†(τ) = lim
n→∞

1

∏
j=n

eA†(t j)δ t . (6.105)

Clearly, at each time interval δ t the integration is performed backwards in time, and
the intervals themselves are ordered with decreasing j. Therefore the action of Z† is
again equivalent to integration of (6.103) backwards in time.

Thus, like in the case of autonomous operators, the action of Z†Z is equivalent to
consecutive integration of (6.98) forwards in time and of (6.103) backwards in time.

Correspondingly, the iteration procedure to search for the first singular vector
presented above is applicable to non-autonomous operators as well.

6.3.3.3 Calculation of consecutive singular vectors

Singular vectors produce an orthogonal set of vectors that can be used as a basis
for decomposition of any linear perturbation. Thus, it could be useful to calculate
not only the first but also the consecutive singular vectors. Therefore, below we will
briefly describe their calculation using the variational method.

In order that the iterations described above converge not to the first singular vec-
tor but to a vector with number N, it is sufficient that the domain of the iteration
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operator completes the subset of linear combinations of previous N−1 vectors, or,
what is equivalent, the initial approximation is orthogonal to the already obtained
singular vectors, i.e. the condition (q(0),v j(0)) = 0 should be satisfied for j < N.
In this case, the action of the iteration operator will be orthogonal to the obtained
singular vectors:

(
Z†Zq(0),v j(0)

)
=

(
Z†Z

∞

∑
k=N

qkvk(0),v j(0)

)
=

(
∞

∑
k=N

σ
2
k qkvk(0),v j(0)

)
= 0

(6.106)
Thus, if we expand some vector over the singular vectors in the form

q(0) =
∞

∑
k=1

qkvk(0), (6.107)

then the change of the initial condition in the iteration procedure by q(0)−
N−1
∑

k=1
qkvk(0)

provides the convergence of power iterations to the singular vector number N. Thus,
having the previous N−1 singular vectors it is always possible to calculate the next
one.

6.3.3.4 Generalization to the non-linear case

In the case of non-linear dynamics, the justification for iterative computation of
optimal growth presented in the two previous sections becomes invalid. However,
in a somewhat generalized form it can be obtained directly from the variational
principle, as we will show below.

The problem is formulated as a search for the initial condition demonstrating the
maximum growth of the norm at a given time, i.e. it is required to find a vector such
that q(0), for which the functional

G (τ) =
||q(t)||2
||q(0)||2 (6.108)

reaches maximum provided that the vector q satisfies the dynamical equations writ-
ten in operator form (6.98). To do this, a technique similar to the well-known La-
grange multipliers method of finding conditional extremum of a function is used.

The Lagrangian necessary to find the conditional extremum in this case in-
cludes two terms: the functional whose maximum is searched for, and the so-called
‘penalty’ term, which is non-zero only if q does not satisfy the dynamical equations
(6.98) (see also Corbett and Bottaro (2001), Guégan et al (2006) and the review
Schmid (2007)):

L (q, q̃) = G (q)−
t∫

0

(q̃, q̇−A(q)q)dτ. (6.109)
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Apparently, the penalty term in (6.109) is written as the inner product of the La-
grange multipliers (entering q̃) and equation (6.98), and additionally integrated over
time. Unlike the well-known problem of finding conditional extremum of a func-
tion, the Lagrangian in this case is a functional defined for all possible shapes of q,
and the Lagrange multipliers themselves are functions rather than numbers.

The extremum of (6.109) is reached when variations of the Lagrangian with re-
spect to q and q̃ vanish simultaneously. These variations are defined as (see book
Gunzburger (2003))

∂L

∂q
δq = lim

ε→0

L (q+ εδq, q̃)−L (q, q̃)
ε

(6.110)

∂L

∂ q̃
δ q̃ = lim

ε→0

L (q, q̃+ εδ q̃)−L (q, q̃)
ε

, (6.111)

where δq and δ q̃ are arbitrary functions taken at any time.
Variation with respect to indefinite multipliers clearly reads

∂L

∂ q̃
δ q̃ =− lim

ε→0

1
ε

t∫
0

(εδ q̃, q̇−A(q)q)dτ =−
t∫

0

(δ q̃, q̇−A(q)q)dτ. (6.112)

Equating (6.112) to zero we obtain, by arbitrariness of δ q̃, equation (6.98). To
compute variations with respect to the state vectors we use the Lagrange identity:
(q̃,Aq) =

(
A†q̃,q

)
(see, for example, Marchuk (1998) for more detail about adjoint

operators in non-linear problems) and take the penalty term by parts, after which the
Lagrangian can be rewritten as

L (q, q̃) = G (q)− (q̃,q)
∣∣∣∣t
0
+

t∫
0

(
˙̃q+A†(q̃)q̃,q

)
dτ. (6.113)

Taking into account the smallness of ε and the real-valued inner product 9, we
then calculate the variation with respect to the state vectors:

∂L

∂q
δq = lim

ε→0

1
ε

[ ||q(t)+ εδq(t)||2
||q(0)+ εδq(0)||2 −

||q(t)||2
||q(0)||2 − (q̃(t),εδq(t))+

+(q̃(0),εδq(0))+
t∫

0

( ˙̃q+A†(q̃)q̃,εδq
)

dτ

 , (6.114)

Here the first term can be recast in the form
9 A real-valued inner product is additionally required only in this section to obtain in simple form
the constraints (6.118) and (6.119), see below.
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lim
ε→0

1
ε

||q(t)+ εδq(t)||2
||q(0)+ εδq(0)||2 = lim

ε→0

1
ε

||q(t)||2 + ε(δq(t),q(t))+ ε(q(t),δq(t))
||q(0)||2 + ε(δq(0),q(0))+ ε(q(0),δq(0))

.

(6.115)
As the inner product is real-valued, we have (δq(t),q(t)) = (q(t),δq(t)), and so
the transformation can be continued:

lim
ε→0

1
ε

[ ||q(t)+ εδq(t)||2
||q(0)+ εδq(0)||2 −

||q(t)||2
||q(0)||2

]
= lim

ε→0

1
ε

[ ||q(t)||2 +2ε(δq(t),q(t))
||q(0)||2 +2ε(δq(0),q(0))

− ||q(t)||
2

||q(0)||2
]
=

= lim
ε→0

1
ε

[
2ε(δq(t),q(t))
||q(0)||2 − 2ε(δq(0),q(0))||q(t)||2

||q(0)||4
]
=

=
2(δq(t),q(t))
||q(0)||2 −2(δq(0),q(0))

||q(t)||2
||q(0)||4 ,

(6.116)
which ultimately gives the variation:

∂L

∂q
δq =

2(δq(t),q(t))
||q(0)||2 −2(δq(0),q(0))

||q(t)||2
||q(0)||4 − (q̃(t),δq(t))+

+(q̃(0),δq(0))+
t∫

0

( ˙̃q+A†(q̃)q̃,δq
)

dτ.

(6.117)

Fig. 6.10 Schematics of the iteration loop to search for the optimal perturbation at time T satisfy-
ing the general set (6.98) (see the review Schmid (2007)).

Since the variations of δq taken at different instants are independent from each
other, equating (6.117) to zero yields the equation for indefinite multipliers (6.103),
which provides the vanishing of the Lagrangian variation in the interval 0 < τ < t,
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as well as the relations between q and q̃, which are necessary for the Lagrangian
variations to vanish at moments τ = 0 and τ = t:

q̃(t) =
2

||q(0)||2 q(t) (6.118)

q(0) =
||q(0)||4
2||q(t)||2 q̃(0). (6.119)

The vectors q and q̃ satisfying equations (6.98) and (6.103) and the constraints
(6.118) and (6.119) turn the Lagrangian variations to zero, and hence precisely for
them the functional (6.108) reaches extremum.

As for linear systems, the joint solution of equations can be found using the
power iteration method schematically shown in Fig. 6.10. This issue is further dis-
cussed in papers Cherubini et al (2010), Cherubini et al (2011), Cherubini and De
Palma (2013). Note once again that for linear perturbations the optimization of the
functional (6.108) is reduced to looking for the maximal eigenvalue of the compos-
ite operator Z†Z.

6.3.4 Adjoint equations

6.3.4.1 Derivation of adjoint equations

In order to obtain an explicit form of adjoint equations to the set (6.8)-(6.10), we
will use the norm identical to the total acoustic energy of the perturbations (6.15).
The inner product corresponding to this norm is given by equation (6.95), which we
have already used. We represent (q̃,Aq) as

(q̃,Aq) = π

rout∫
rin

Σ

[
δ ṽr

(
imΩδv∗r +2Ωδv∗ϕ −

∂δh∗

∂ r

)
+δ ṽϕ

(
− κ2

2Ω
δv∗r + imΩδv∗ϕ +

imδh∗

r

)
+

+
δ h̃
a2∗

(
− a2

∗
Σr

∂

∂ r
(rΣδv∗r )+

ima2
∗

r
δv∗ϕ + imΩδh∗

)]
rdr.

(6.120)
Now, using the Lagrange identity (q̃,Aq) = (A†q̃,q) and equation (6.103) in the

left part of this expression, we represent the inner product according to (6.95). The
right-hand side can be rearranged in a way to get the components of δq in the form
of multipliers. Here, the spatial derivatives are rearranged using integration by parts.
We obtain
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π

rout∫
rin

Σrdr
[
−δv∗r

∂ ṽr

∂ t
−δv∗ϕ

∂ ṽϕ

∂ t
−δh∗

∂ h̃
∂ t

]
=

= π

rout∫
rin

Σrdr
[

δv∗r

(
imΩδ ṽr−

κ2

2Ω
δ ṽϕ +

∂δ h̃
∂ r

)
+δv∗ϕ

(
2Ωδ ṽr + imΩδ ṽϕ +

im
r

δ h̃
)
+

+ δh∗
(

1
rΣ

∂

∂ r
(rΣδ ṽr)+

im
r

δ ṽϕ +
imΩ

a2∗
δ h̃
)]
−πrΣδ h̃δv∗r

∣∣∣∣rout

rin

−πrΣδ ṽrδh∗
∣∣∣∣rout

rin

.

(6.121)
The substitutions on the right-hand side of (6.121) vanish since Σ → 0 at the bound-
aries.

The components of variation δq are arbitrary and independent, so (6.121) is
transformed into three independent equalities each corresponding to a certain com-
ponent of δq. These equalities result in a set of adjoint equations:

∂δ ṽr

∂ t
=−imΩ δ ṽr +

κ2

2Ω
δ ṽϕ −

∂δ h̃
∂ r

, (6.122)

∂δ ṽϕ

∂ t
=−2Ωδ ṽr− imΩ δ ṽϕ −

im
r

δ h̃, (6.123)

∂δ h̃
∂ t

=− a2
∗

rΣ

∂

∂ r
(rΣδ ṽr)−

ima2
∗

r
δ ṽϕ − imΩ δ h̃. (6.124)

Changing to the local space limit in (6.122)-(6.124) (as we did in Section 6.2.2
to obtain the set (6.17)-(6.19) from equations (6.8)-(6.10)) we get an explicit form
of equations adjoint to the set (6.17)-(6.19):(

∂

∂ t
−qΩ0x

∂

∂y

)
ũx− (2−q)Ω0ũy =−

∂W̃
∂x

, (6.125)

(
∂

∂ t
−qΩ0x

∂

∂y

)
ũy +2Ω0ũx =−

∂W̃
∂y

, (6.126)(
∂

∂ t
−qΩ0x

∂

∂y

)
W̃ +a2

∗

(
∂ ũx

∂x
+

∂ ũy

∂y

)
= 0, (6.127)

where tildes above ux, uy and W means that these quantities compose an adjoint
state vector.

Finally, changing to the co-moving reference frame in (6.125)-(6.127) yields ad-
joint equations for a particular SFH:

d ˆ̃ux

dt
= (2−q) ˆ̃uy− i k̃x(t) ˆ̃W, (6.128)

d ˆ̃uy

dt
=−2 ˆ̃ux− iky

ˆ̃W, (6.129)
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d ˆ̃W
dt

=−i( k̃x(t) ˆ̃ux + ky ˆ̃uy ). (6.130)

Applying the power iteration method jointly to (6.8)-(6.10) and (6.122)-(6.124)
for global azimuthal Fourier harmonics of two-dimensional perturbations, or to the
sets (6.23)-(6.25) and (6.128)-(6.130) for the local SFH, we automatically arrive at
the optimal initial profiles of the enthalpy and velocity component perturbations that
maximize the total acoustic energy growth at a given time interval. This problem in
application to Keplerian flows was solved by Zhuravlev and Razdoburdin (2014).

To illustrate this iteration algorithm, let us consider convergence of two different
initial conditions to an optimal perturbation in a global approach (i.e. with usage
of the sets (6.8-6.10) and (6.122-6.124)). In Fig 6.11 a change of the perturbation
profile at t = 0 during the iteration procedure is shown. It is easy to see that neither
the profile nor the amplification factor of the resulting perturbations depends on the
initial profile. However, the initial profile have influence on the convergence rate.

6.3.4.2 Non-normality condition for Z

Here we show that non-normality of the dynamical operator determined by the
set of equations (6.8)-(6.10) is a direct consequence of the angular velocity gradient
in the flow. We already discussed this in Section 6.3.1, where we introduced the
notion of singular vectors. Now we can prove this rigorously in a rather general
case, since the explicit form of the operator A†, defined by the set (6.122)-(6.124),
is known. First, let us calculate the commutator of A and A†:

[
A,A†]=


16Ω 4−κ4

4Ω 2 0 im
2rΩ

(
4Ω 2−κ2

)
0 κ4−16Ω 4

4Ω 2
4Ω 2−κ2

2Ω

∂

∂ r
ima2∗
2rΩ

(
κ2−4Ω 2

) a2∗
rΣ

∂

∂ r

( rΣ

2Ω

(
κ2−4Ω 2

))
+ a2∗

2Ω

(
κ2−4Ω 2

)
∂

∂ r 0

 .

(6.131)
It is not difficult to see that

[
A,A†

]
vanishes for κ = 2Ω , which corresponds

to solid-body rotation. In this case the commutator
[
Z,Z†

]
=
[
eAt ,eA†t

]
can easily

be found, since for commuting operators the product of their operator exponents
is equal to the exponent of their sum, which can be easily verified by writing the
operator exponents as the corresponding infinite series[

eAt ,eA†t
]
= eAteA†t − eA†teAt = e(A+A†)t − e(A†+A)t = 0. (6.132)

Thus, the operator Z becomes normal for solid-body rotation.
The inverse statement is also valid: if Z is normal at any time t, the rotation

is solid-body. To see this, use the Campbell-Baker-Hausdorff formula (Richtmyer
(1981), Ch. 25) to represent the composite operators ZZ† and Z†Z:
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Fig. 6.11 Illustration of iteration convergence for two different initial conditions. In the top left
panel initial radial profiles of |δh| are shown. In the top right, middle left, middle right and bottom
left panels radial profiles of |δh| are shown after 25, 80, 120 and 350 iterations respectively. In the
bottom right panel the amplification factor Gp as a function of iteration number p is shown. Solid
lines denote the radial disturbance of |δh| for an initial profile in the form of a‘double gaussian
function’ (thesum of two gaussian distributions with different mean). Dotted lines denote the initial
profile in the form of a single gaussian function. For both initial conditions, initial velocities are
equal to zero before iterations start. A Shakura-Sunyaev disc was used as background flow. The
azimuthal number was set to m = 5, the polytropic index n = 3/2, the optimization time T = 3 and
δ = 0.05 (see paper Zhuravlev and Razdoburdin (2014) for a detailed description of the background
flow).
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The equality

[
eAt ,eA†t

]
= 0 is fulfilled for any t, therefore the terms with the

same powers of t must be independently equal to zero, which is possible only if the
commutator

[
A,A†

]
= 0. The last equality is valid for solid-body rotation only.

This implies that solid-body rotation is necessary and sufficient for the dynamical
operator Z of the set (6.8)-(6.10) to be normal. Thus, any deviation from solid-body
rotation, for example the appearance of an angular velocity gradient in astrophys-
ical discs, makes the dynamical operator non-normal and perturbation modes non-
orthogonal to each other.

6.4 Optimal perturbations in Keplerian discs

In the concluding section of this chapter we would like to briefly discuss the
use of the variational method to search for optimal perturbations in astrophysical
discs. We consider geometrically thin discs with an almost Keplerian azimuthal ve-
locity profile in the background flow. In the numerical calculations we are going
to consider a radially infinite disc with only an inner (free) boundary and a thin
quasi-Keplerian torus with inner and outer radial boundaries. The latter configura-
tion was used in Section 6.3.2 for the analysis of superposition of neutral modes to
illustrate the matrix method of optimization. However, for the sake of methodology,
we start with the simplest analytically tractable problem of transient growth of local
short-wave perturbations with ky� 1 which we discussed in detail in Section 6.2.3

6.4.1 Local approximation

Indeed, let us apply the power iteration method to the sets (6.23-6.25), (6.128-
6.130) in the limit ky� 1 corresponding to an incompressible fluid. In this limit, the
set (6.23)-(6.25) can be reduced to one equation for ûx:

dûx

dt
+2qky

k̃x

k2
y + k̃2

x
ûx = 0, (6.135)

giving the analytical solution

ûx(t) = ûx(0)
k2

x + k2
y

k̃2
x + k2

y
, (6.136)
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which, of course, repeat (6.37) for ky� 1.
At the same time, the adjoint equations (6.128)-(6.130) in the limit of an incom-

pressible fluid suggest that the quantity ˆ̃ux conjugate to ûx is conserved 10:

d ˆ̃ux

dt
= 0. (6.137)

Obviously, after p iterations of the arbitrary initial profile ûin
x (kx,ky, t = 0) we

obtain that it is multiplied by the factor:[
k2

x + k2
y

(k̃x(t)2 + k2
y

]p

. (6.138)

With account for renormalization of the solution at each iteration, while p→ ∞,
the factor (6.138) suppresses all SFH composing ûin

x (kx,ky, t = 0) except the optimal
SFH corresponding to a maximum of (6.138) as a function of kx. For a fixed time
interval t this kx takes the value

kx = 1/2ky (−qt− ((qt)2 +4)1/2). (6.139)

Plugging (6.139) into the SFH growth factor (6.44) yields the sought for optimal
growth G, which for the local problem is defined as (6.46):

G(t) =
(qt)2 +qt[(qt)2 +4]1/2 +4
(qt)2−qt[(qt)2 +4]1/2 +4

. (6.140)

Expression (6.140) represents the first singular value which the iteration loop for
short-wave local vortices converges to. Apparently, for large time intervals, qt� 1,
it gives G ≈ (qt)2, which reproduces the approximate estimate of G according to
formula (6.48).

Also note that an exact result (6.140) could be obtained in this simple example di-
rectly from the expression for the growth factor (6.44) by calculating the maximum
of g as a function of kx at a fixed t.

For arbitrary ky the optimal growth can be obtained by numerical forwards-
backwards integration of the full set of direct and adjoint equations, which are ordi-
nary differential equations for SFH.

6.4.2 Global problem

In the case where the azimuthal scale of perturbations is comparable to the hor-
izontal disc scale it is necessary to numerically solve the set of partial differential

10 It can be verified that the value of I, which is conserved in the direct equations (6.23)-(6.25),
becomes time-dependent in the adjoint equations (6.128)-(6.130) (see the Appendix in paper Zhu-
ravlev and Razdoburdin (2014)).
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Fig. 6.12 Comparison of growth rate of individual perturbations, acquired with the help of
equation (6.44) (dotted lines) for ky = 100, q = 1.5, with optimal growth rate from equation
(6.140) (solid line). Initial kx for individual perturbations are chosen to provide swing at moments
t = 3,4,5. It is easy to see that for all moments G(t)≥ g(t).

equations (6.8)-(6.10) and (6.122)-(6.124), which was done in paper Zhuravlev and
Razdoburdin (2014), using a second-order explicit difference scheme (leap-frog)
(see, for example, Frank and Robertson (1988)).

Fig. 6.13 Illustration to the numerical scheme of integration of equations (6.8)-(6.10) and (6.122)-
(6.124).

In this difference scheme, each equation is separated into real and imaginary parts
and on the plane (r, t) 4 grids are introduced. Unknown variables are calculated in
the nodes of these grids using the corresponding differences (Fig. 6.13). The nodes
are shifted with respect to each other by half a time step ∆ t and/or by half a radial
step ∆r. This allows the use of a central approximation to the calculated derivatives
with respect to r and t, which provides an accuracy of the order of (∆r)2 and (∆ t)2.
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The time step is determined using the radial step and the Courant condition that
follows from the local dispersion relation, which can be obtained from the equations
being integrated.

6.4.2.1 Comparison of the transient growth of vortices in global and local
space limits

As a background flow, consider an infinite Keplerian disc that has only an inner
boundary at r = r1. To see how the cylindrical geometry of the disc and, mainly, the
accurate profile of the Keplerian angular velocity, Ω = Ω(r1)(r/r1)

−3/2, affect the
transient growth, we assume for simplicity that all other values in the equations for
the perturbations are constant:

Σ = const, aeq = (δ/
√

2n)(Ωr)|r1 . (6.141)

As shown in paper Zhuravlev and Razdoburdin (2014), an account for a more
realistic distribution of Σ and aeq (for example, as in standard accretion discs) does
not change the qualitative conclusions presented below. The results of local and
global calculations of optimal perturbations using the variational method are shown
in Fig. 6.14.

Fig. 6.14 Comparison of the optimal growth for small-scale and large-scale vortices (see Section
6.2.3) in the global and local space limits. The solid and dotted curves are calculated for local SFH
using formula (6.46) using an iteration loop for equations (6.23)-(6.25) and (6.128)-(6.130) for
ky = 12.5 and ky = 0.125, respectively. Harmonics with m = 5 are taken as global perturbations.
The optimal perturbations are calculated using formula (6.94) using an iteration loop for equations
(6.8)-(6.10) and (6.122)-(6.124) with the polytropic index n= 3/2. Using the relation (m/r)H ∼ ky,
for similar large-scale and small-scales vortices, a disc with δ = 0.05 (the dashed-dotted line) and
a formally thick disc with δ = 5 (the dashed line) were considered, respectively. In both cases time
is expressed in units of Ω(r1)

−1.
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Here we compare the transient growth of vortices with azimuthal scale both
smaller and larger than the disc thickness. The main qualitative conclusion is that
the growth rate of small-scale vortices (λϕ < H) decreases much faster, as one pro-
ceeds from the shearing sheet approximation to the scales of order of the disc radial
size (i.e. from m = ∞ to m ∼ 1), than that of large-scale vortices (λϕ > H). It can
be verified that in the limiting case of global perturbations with m = 1, the value
of G for small-scale and large-scale vortices differ to within a factor of 1.5–2 only,
for the given parameters and for time intervals up to t ∼ 20. At the same time, for
local vortices, the value of G for λϕ < H and λϕ > H differs by several orders of
magnitude. This suggests that global large-scale vortices in thin Keplerian discs can
also exhibit a growth of dozens of times on quite short time scales of the order of a
few Keplerian periods at the inner disc boundary. In turn, this may imply importance
of transient growth of perturbations for angular momentum transfer on scales much
larger than the disc thickness.

6.4.2.2 Transient spirals and modes in a quasi-Keplerian torus

Finally, let us return to the disc model considered above for illustration of the ma-
trix method (see Section 6.3.2). As is well known (see, for example, Glatzel (1987),
Glatzel (1987), Glatzel (1988), as well as Zhuravlev and Shakura (2007b)), this
flow demonstrates a weak spectral instability, since there are exponentially grow-
ing inertial-acoustic modes present. As we have already mentioned in Section 6.2.1,
their increments rapidly decrease with decreasing relative geometrical thickness of
the torus, i.e. with Ω approaching a Keplerian profile. Then, perturbations can grow
only due to the transient mechanism of shortening of leading spirals by the shear
flow (see the discussion in Section 6.2.3), which occurs on short time scales of the
order of a few Keplerian periods in the flow. However, in the intermediate case,
where the pressure gradient in the torus is sufficiently high, both non-modal and
modal perturbation growth can occur simultaneously but on different time scales.
The exponential growth of modes will always dominate over the transient growth
starting from some large time intervals. Interestingly, essentially this means that as
calculating the first singular value of the dynamical operator employing the varia-
tional method, starting from some t the curve G(t) should become exponential cor-
responding to the most unstable mode. At the same time, the iteration loop, which
always converges to the optimal initial perturbation vector q(t = 0), must then give
not a leading spiral, but a mode. Whereas the spiral starts being shrunk by the shear
flow and enhanced due to the perimeter shortening (see the discussion in Section
6.2.1) at the time t > 0, the mode rotates like a solid body with angular velocity
equal to Ω at the corotation radius inside the flow, since its amplitude increases due
to the resonance energy exchange with the flow at this radius. Thus, the method of
optimization of perturbations can be applied both to study the transient growth of
perturbations and to find the profiles and increments of the most unstable modes in
arbitrary complex shear flows, i.e. to solve the spectral problem as well.



6 Transient dynamics of perturbations in astrophysical disks 311

An example of the calculation of a transient spiral and of an unstable mode in
the same toroidal flow by joint solution of the set (6.8)-(6.10) and (6.122)-(6.124),
employing the variational method, was presented in Fig. 6.1 and 6.2 in the Introduc-
tion. As we see, even for δ = 0.3 the maximal increment is very low, and it takes
∼ 103 Keplerian periods for the most unstable mode to at least double its amplitude.
At the same time, the transient growing spiral increases by a factor of 6 already after
a few rotational periods at the inner disc boundary.

6.5 Conclusions

This chapter is devoted to the transient dynamics of perturbations, which is of
special interest in the theory of astrophysical discs, in particular accretion discs. Ex-
ponentially growing perturbations do not exist in a homogeneous inviscid Keplerian
flow, provided that there are no conditions for the magneto-rotational instability.
Nevertheless, observations suggest that also in this case angular momentum should
be somehow transported outwards. At least, this implies that there should be some
mechanism of energy transfer from the regular rotational motion to hydrodynami-
cal perturbations. In spectrally stable flows the transient growth mechanism is re-
sponsible for this. Here it was introduced by a simple example of two-dimensional
vortices and it was discussed that the reason for their growth is the shortening of
the length of leading spirals by the differential rotation of the flow (see Fig. 6.2 and
6.3). Notwithstanding their seeming simplicity, these (quasi-)columnar structures
exhibit the strongest ability to extract energy from spectrally stable differentially
rotating flows (see Maretzke et al (2014)). Physically, the energy growth of vortices
takes place due to their own angular momentum conservation, which in the local
limit is expressed by the conservation of their potential vorticity and the existence
of the invariant I (see Section 6.2.2). Here we considered both small-scale (ky� 1)
and large-scale (ky � 1) vortices and compared their optimal growth with account
for non-zero effective viscosity in the disc (see Fig. 6.4). Importantly, the transient
growth of large-scale vortices strongly increases for super-Keplerian rotation, which
can be significant in relativistic discs where q > 3/2. In this chapter, special atten-
tion was given to the mathematical aspects of non-modal analysis and to methods
of optimal perturbations computation. We have discussed in detail that the transient
growth is a consequence of non-normality of the governing dynamical operator of
the problem and non-orthogonality of its eigenvectors, i.e. modes of perturbations
(see Fig. 6.5 and 6.6). Therefore, the growth of arbitrary perturbations can be ade-
quately studied by calculating not eigenvectors but singular vectors of this operator.
We have considered two methods: a matrix and variational one and applied them
to the particular problems (see the corresponding results in Fig. 6.8 and 6.14). The
matrix method requires a discrete representation of the dynamical operator, for ex-
ample, in the basis of its eigenvectors. The variational method is reduced to iterative
integration of the set of direct and adjoint equations forwards and backwards in
time, respectively. We have emphasized that the variational method is more uni-
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versal and can be applied to the study of non-modal dynamics of perturbations in
non-stationary flows, as well as to non-linear problems.

As was discussed, the transient growth of perturbations is used in the concept of
bypass transition to turbulence in laminar flows. It can be also important as a mech-
anism of enhanced angular momentum transfer and stimulation of the accretion rate
in weakly turbulized discs. Note that turbulence emerging due to the bypass mech-
anism is fundamentally different from ‘classical’ turbulence, in which the energy
transfer from the background flow is mediated by modes exponentially growing on
large spatial scales, whereas the non-linear interactions nothing but redistribute this
energy between modes with other wave vectors k (the so-called direct or inverse cas-
cade). This means that in phase space an energy flux εT (k) arises which brings (in
the case of direct cascade) the kinetic energy of perturbations to small scales where
viscous dissipation occurs. In this picture, the mode distribution over the directions
of k in phase space is of minor importance, and εT can be non-zero only along the
direction of change of the module k. A completely different situation should arise if
the transient growth of perturbations is responsible for the energy transfer from the
background flow. This linear mechanism appears as leading spirals in the disc, i.e.
spatial Fourier harmonics corresponding to only such values k that kx/ky < 0. In a
spectrally stable flow, where there is no energy supply to the leading spirals, initial
perturbations inevitably decay as the leading spirals turn into trailing ones. Thus,
the turbulent state here is possible only due to positive non-linear feedback, which
can exist only in the appearance of non-zero εT also in the direction of positional
change of the vector k, i.e. in the phase space angles, when the trailing spirals return
a part of their energy to the leading spirals, sufficient to sustain transient growth.
Simultaneously, the rest of the energy stored in the trailing spirals dissipates into
heat due to their ultimate transition to higher k. Here, heat dissipation can be not
due to a direct cascade, but to a purely linear winding up of the trailing spiral by the
flow, i.e. to the increase in time of the ratio kx/ky > 0 at ky = const. As we see, the
transverse cascade is an essential part of the alternative picture of turbulence in a
shear flow, which is the angular redistribution of spatial Fourier harmonics of per-
turbations (see, for example, the appendix in Chagelishvili et al (2003)). The main-
tainance of transient growth of small perturbations by the transverse cascade was
studied in detail in Horton et al (2010) for a two-dimensional Couette flow. These
profound changes in the concept of the possible structure of turbulent flows should
affect both analytical estimates of the turbulent viscosity coefficient (see, for exam-
ple, Canuto et al (1984)), and numerical simulations of turbulence in astrophysical
discs (see, for example, Simon et al (2009), Davis et al (2010), where spectral prop-
erties of turbulence averaged over the directions of k were mostly studied). Note
that we deliberately cited here numerical simulations in discs containing magnetic
fields, in which modal growth of perturbations due to the magneto-rotational insta-
bility takes place. The point is that recent studies Squire and Bhattacharjee (2014)
and Squire and Bhattacharjee (2014) show that even in Keplerian flows, where the
magneto-rotational instability operates, the optimal transiently growing perturba-
tions dominate over exponentially growing modes on short time-scales. Like in an
unmagnetized flow, these transient perturbations are locally represented by shear
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harmonics. Thus, non-modal dynamics of perturbations can be an essential tool in
extracting energy from the background flow in MHD-turbulent accretion discs as
well. Another hint of this is the recent paper Mamatsashvili et al (2014), which
studied numerically (similar to Horton et al (2010)) the transverse cascade of shear
harmonics in a spectrally stable plane-parallel magnetized flow and demonstrated
that two-dimensional turbulence arises due to a positive feedback with linear tran-
sient growth of shear harmonics. The plane Poiseuille flow provides another exam-
ple of a shear flow in which the bypass transition to turbulence turns out to be more
preferable than the ‘classical’ mechanism, despite the presence of growing modes.
Here we mention Schmid et al (1996) and Reddy et al (1998), who numerically
studied not the developed turbulence (as is usually done in most of papers on MHD-
turbulence in Keplerian flows), but some scenarios of the transition to turbulence
from regular initial small perturbations of different types (see also Ch. 9 of book
Schmid and Henningson (2001)). It turned out that the previously accepted scenario
of a transition due to secondary instability of saturated modes requires much more
time and/or significantly higher initial perturbation amplitudes than a transition due
to secondary instability of the so-called streaks grown due to the transient mech-
anism. For the sake of clarity, we stress that streaks in the 3D model of a plane
Poiselle flow grow from the so called vortex rolls due to the lift-up mechanism,
which is also a variant of transient growth, but differs from the (swing) amplifica-
tion of 2D vortices considered throughout this work. Anyhow, as follows from Fig. 1
of Schmid et al (1996), the time of turbulence development from regular initial per-
turbations strongly depends on their amplitudes. This is not surprising, since vortex
rolls (just like the 2D spatial Fourier harmonics studied above) of smaller amplitude
require more time to saturate, after which secondary instability comes into play lead-
ing directly to a breakdown to turbulence. Clearly, the time for such a transition can
be as long as hundreds of characteristic shear times, and nevertheless this does not
affect later the properties and power of turbulent motions. Although we at present
have results only from studies of plane-parallel flows, in the future results may be
obtained in a similar way for quasi-Keplerian flows with high Reynolds numbers,
since locally such flows differ from plane-parallel flows only by the presence of
the Coriolis force stabilizing the flow. At last, additional useful evidence presented
here are the simplified finite-dimensional dynamical models of non-normal systems
with positive feedback that recover basic properties of transition to turbulence in
spectrally stable shear flows (see Trefethen et al (1993) and Waleffe (1995)). For
example, in Fig. 10 of Trefethen et al (1993) it can be seen that the time for such
a simplified model to reach one and the same ‘turbulent’ state increases with a de-
crease of the initial perturbation amplitude and ultimately becomes infinite.

To conclude, we stress once again that here we have not discussed the aspects
of three-dimensional perturbation dynamics. Meanwhile, there are indications that
taking into account the natural inhomogeneity of the disc due to vertical density and
pressure gradients gives a qualitatively new picture of both the transient growth of
perturbations and the subsequent transition to turbulence (see Lominadze (2011)).
Here, the perturbation dynamics is essentially three-dimensional, and it can be
shown that for three-dimensional transient vortices there is a time-conserved ana-
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logue of the invariant of motion I (see Tevzadze et al (2003) and Tevzadze et al
(2008)). The new numerical calculations carried out in Marcus et al (2014) also
point out that taking into account the disc vertical inhomogeneity can result in its
destabilization in the subcritical regime at high Reynolds numbers, unlike the case
observed in a homogeneous flow (see Shen et al (2006)).
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Chapter 7
Quasi-spherical Subsonic Accretion onto
Magnetized Neutron Stars

Nikolay Shakura, Konstantin Postnov, Alexandra Kochetkova, and Linnea
Hjalmarsdotter

Abstract A theory of quasi-spherical subsonic accretion onto slowly rotating mag-
netized neutron stars is presented. In this regime, the accreted matter settles with
subsonic velocities onto the rotating magnetosphere forming an extended quasi-
spherical shell. The accretion rate in the shell is determined by the ability of the
plasma to enter the magnetosphere due to the Rayleigh-Taylor instability with ac-
count for cooling. This accretion regime may be established for moderate X-ray
luminosities, corresponding to accretion rates Ṁ < Ṁ† ' 4×1016 g s−1. For higher
accretion rates a free-fall gap appears, due to strong Compton cooling of the flow
above the magnetosphere, and accretion becomes highly non-stationary. Observa-
tions of spin-up and spin-down in equilibrium wind-fed X-ray pulsars with known
orbital periods (like GX 301-2 and Vela X-1) enable the determination of the basic
dimensionless model parameters and estimation of the neutron star magnetic field.
In equilibrium pulsars with independently measured magnetic fields, the model en-
ables the stellar wind velocity to be independently estimated. For non-equilibrium
pulsars, there exists a maximum spin-down rate of the accreting neutron star. The
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model can also explain bright flares in Supergiant Fast X-ray Transients if stellar
winds of the O-supergiant companions are magnetized.

7.1 Introduction

The X-ray pulsar phenomenon appears during accretion of matter onto rotating
strongly magnetized neutron stars (NSs) in binary systems. If the secondary com-
panion of the binary (the optical star) fills its Roche lobe, an accretion disc is formed
around the NS. If the secondary companion is an early type massive star, the NS may
accrete from its powerful stellar wind. In this case, depending on the stellar wind
parameters, either an accretion disc forms around the NS magnetosphere or accre-
tion proceeds quasi-spherically. The strong magnetic field of the NS (of the order of
1012−1013 G) alters the accretion flow near the NS magnetosphere that forms at a
certain distance from the NS. The plasma flow gets frozen into the magnetic field
and is canalized towards the polar cap region onto the NS surface, where hot spots
or accretion columns are produced. If the magnetic dipole axis is misaligned with
the NS rotation, pulsating X-ray emission may be observed. Most X-ray pulsars ex-
hibit stochastic variations of the NS spin frequency and X-ray flux. Many sources
also show long-term variability in the NS spin frequency, when the latter increases
(spins-up) or decreases (spins-down) on average, as well as switches between spin-
up and spin-down (so-called spin reversals) (see Bildsten et al (1997) for a detailed
review and references.)

The most studied case is accretion through a geometrically thin disc onto rela-
tivistic compact stars Shakura and Sunyaev (1973). Here, the spin-up torque acting
on the NS can be written as Pringle and Rees (1972) Ksu ≈ Ṁ

√
GMRA . The inner

radius of the disc around an X-ray pulsar is determined by the Alfvén surface RA
located at distance RA ∼ Ṁ−2/7, therefore Ksu ∼ Ṁ6/7, i.e. for disc accretion, the
spin-up torque is almost linearly dependent on the mass accretion rate (X-ray lu-
minosity). The spin-down torque for disc accretion is, in the first approximation,
independent of Ṁ: Ksd ∼−µ2/R3

c , where Rc = (GM/(ω∗)2)1/3 is the corotation ra-
dius, ω∗ is the NS rotational frequency and µ is the NS dipole magnetic moment. In
fact, the torques in disc accretion are determined by complex disc-magnetospheric
interaction (see, for example, Ghosh and Lamb (1979); Lovelace et al (1995) and
the discussion in Kluźniak and Rappaport (2007)) and may thus have a more com-
plicated dependence on the mass accretion rate and other parameters.

Measurements of NS spin-up/spin-down in X-ray pulsars can be used to estimate
a very important NS characteristic – its magnetic field. The NS spin period in X-ray
pulsars is usually close to the equilibrium value Peq, at which the total torque applied
to the NS vanishes, K =Ksu+Ksd = 0. Therefore, by assuming that the observed NS
spin frequency is ω∗ = 2π/Peq, the equation for the equilibrium period with known
Ṁ enables the NS magnetic field to be estimated.

In the case of quasi-spherical accretion, which may take place in binary systems
in which the optical star does not fill its Roche lobe and no disc is formed, the sit-
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uation turns out to be more complicated. Clearly, to spin-up or spin down a NS in
this regime, the amount and sign of the angular momentum of matter gravitationally
captured from the stellar wind are important.To within a factor of the order of one
(which can be positive or negative, see, for example, numerical simulations Fryx-
ell and Taam (1988); Ruffert (1997, 1999)), the torque applied to the NS in this
case is proportional to ṀωBR2

B, where ωB = 2π/PB is the orbital angular frequency,
RB = 2GM/(V 2

w + v2
orb) is the Bondi gravitational capture radius, Vw is the stellar

wind velocity near the NS, and vorb is its orbital velocity. In reality, the orbital ec-
centricity in high-mass X-ray binaries (HMXBs) is usually non-zero, and the stellar
wind can be variable and inhomogeneous. Therefore, the spin-up torque Ksu can be a
complicated function of time. The spin-down torque in this case is even more uncer-
tain since it is no longer possible to write down a simple relation like −µ2/R3

c (the
corotation radius Rc does not have a physical meaning in quasi-spherical accretion;
in slowly rotating X-ray pulsars it is much larger than the Alfvén radius at which
in fact the angular momentum transfer from the accreting matter to the NS magne-
tosphere occurs). For example, the use of the braking torque in the form −µ2/R3

c
formally leads to very high magnetic fields for long-period X-ray pulsars (of the
order of 1014 G and even higher). This is apparently a result of an underestimation
of the spin-down torque applied to the NS magnetosphere in the quasi-spherical
accretion regime.

The matter captured from the stellar wind may accrete onto the NS in different
ways. Indeed, if the X-ray flux from the accreting NS is high enough, the stellar wind
matter, heated downstream the bow shock, rapidly cools down by the radiation via
Compton cooling and falls freely onto the magnetosphere. The velocity of the freely
falling matter rapidly exceeds the sound speed, and a shock appears above the mag-
netosphere. This regime of accretion was studied in Burnard et al (1983). Depending
on the specific angular momentum vector direction (along or opposite to the orbital
angular momentum), the NS can spin-up or spin-down. However, if the X-ray flux
(more precisely, the energy density of photons) is below a certain value, the plasma
heated behind the Bondi radius has no time to cool down, and the fall of matter to-
wards the magnetosphere may proceed subsonically (the settling accretion regime).
In the last case, a hot quasi-spherical shell arises around the magnetosphere (Davies
and Pringle 1981) (see Fig. 7.1). Due to additional energy release (especially close
to the base of the shell), the temperature gradient across the shell becomes supera-
diabatic, giving rise to large-scale convective motions in the shell. The convection
generates turbulence, and thus the motion of a fluid parcel in such a shell is very
intricate. If the plasma is able to enter the magnetosphere and then fall onto the
NS, the accretion rate in the entire shell will be determined by the magnetosphere.
For example, under certain conditions, a shell may be present, but the accretion rate
through it may be very small. Thus, in the shell, there may be slow subsonic settling
of matter on top of large-scale convective motions. This accretion regime is possi-
ble at relatively low X-ray luminosities, Lx < 4× 1036 erg s−1 (see below), and is
radically different from the numerical calculations of quasi-spherical accretion onto
NSs mentioned above. When a quasi-spherical shell is present, its interaction with
the rotating NS magnetosphere will spin-up or spin-down the NS depending on the
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sign of the difference between the angular velocity of the accreting matter and the
magnetospheric boundary. Therefore, in the settling accretion regime, both spin-up
and spin-down of the NS is possible, even if the the specific angular momentum
of the captured stellar wind matter is aligned with the orbital angular momentum.
Here the angular momentum may flow towards the rotating neutron star or outwards
through the shell.

RB

R
A

OB

Fig. 7.1 Schematics of quasi-spherical accretion from the stellar wind of the optical component of
a binary system (to the left) onto a magnetized NS (to the right). In the subsonic settling regime,
a quasi-spherical shell (dark region) is formed between the bow-shock (the parabolic curve) and
the NS magnetosphere with radius RA, in which large-scale convective motions appear that may
remove angular momentum from the magnetosphere. The outer radius of the shell is determined
by the gravitational capture Bondi radius RB.

In the literature, there are several models (see especially Illarionov and Kom-
paneets (1990) and Bisnovatyi-Kogan (1991)), in which the spin-down torque ap-
plied to the NS magnetosphere in the case of quasi-spherical accretion is written
as Ksd ∼ −ṀR2

Aω∗. With account for the standard definition of the Alfvén radius,
RA ∼ Ṁ−2/7µ4/7, this torque is proportional to Ksd ∼ −µ8/7Ṁ3/7. In our model,
the matter of the shell settles down with a subsonic velocity as it cools down
near the magnetospheric boundary, and the Alfvén radius is determined differently:
RA ∼ Ṁ−2/11µ6/11 (see below).

There can be two different mechanisms of angular momentum removal from
the rotating magnetosphere outwards the shell. In the first case (we call it moder-
ate coupling), the angular momentum transfer is mediated by convective motions
in the shell, and the spin-down torque in the settling accretion regime depends
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on the accretion rate as Ksd ∼ −Ṁ3/11. In this case the characteristic velocity of
convective motions is subsonic. In addition, a settling regime is possible in which
the angular momentum transfer is due to the shear turbulence near the magneto-
sphere (the case of weak coupling). In this case, the characteristic velocity of the
shear flow near the magnetosphere is of the order of its linear rotational velocity.
Then Ksd ∼ µ2/R3

c ∼ µ2ω∗2/(GM), i.e. in the weak coupling regime the spin-down
torque does not depend on the accretion rate at all.

To stress the difference between the two possible subsonic accretion regimes (the
moderate and weak coupling), we may rewrite the spin-down torque due to convec-
tion (the moderate coupling) using the corotation radius and the Alfvén radius in

the form Ksd ∼−µ2/
√

R3
cR3

A ∼−(µ2/R3
c)(Rc/RA)

3/2 (see below in Section 7.11).

As the factor (Rc/RA)
3/2 ∼ (ωK(RA)/ω∗) in reality may be of the order of a factor

10 or larger, the use of the spin-down torque in the ‘traditional’ form µ2/R3
c may

strongly overestimate the NS magnetic field.
The dependence of the spin-down torque on the accretion rate in the quasi-

spherical accretion regime suggests that variations in the mass accretion rate (and
hence in the X-ray luminosity) should result in a change from spin-up (at high lumi-
nosities) to spin-down (at low luminosities) at some critical value of the mass accre-
tion rate Ṁ (or RA), which will be different for different sources. This phenomenon
(also known as ‘torque reversal’) is indeed observed in some X-ray pulsars with
quasi-spherical accretion, for example, in Vela X-1, GX 301-2 and GX 1+4, and
below we consider these objects in more detail.

7.2 Two Regimes of Quasi-spherical Wind Accretion

We start with the basic physical picture of quasi-spherical wind accretion onto
NSs in binary systems. Quasi-spherical accretion is most likely to occur in wind-fed
high-mass X-ray binaries when the optical star of early spectral class (OB) does not
fill its Roche lobe, but experiences significant mass loss via stellar wind. We shall
discuss the wind accretion regime, in which a bow shock forms in the stellar wind
around the compact star. The characteristic distance at which the bow shock forms
is approximately equal to the gravitational capture (Bondi) radius

RB = 2GM/(v2
w + v2

orb) , (7.1)

where vw is the wind velocity (typically 100-1000 km/s), vorb is the orbital velocity
of the NS, which is usually much smaller than vw, so below we will neglect it. The
rate of gravitational capture of mass from a wind with density ρw near the orbital
position of the NS is the Bondi-Hoyle-Littleton mass accretion rate:

ṀB ' ρwR2
Bvw ∝ ρwv−3

w . (7.2)
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7.2.1 Supersonic (Bondi-Hoyle-Littleton) Accretion

As noted in the Introduction, there can be two different cases of quasi-spherical
accretion. The classical Bondi-Hoyle-Littleton accretion takes place when the shocked
matter cools down rapidly, and falls freely towards the NS magnetosphere (see
Fig. 7.2) by forming a shock at some distance above the magnetosphere. Here the
shocked matter cools down (mainly by Compton processes) and enters the magne-
tosphere via the Rayleigh-Taylor instability (Arons and Lea 1976). The magneto-
spheric boundary is characterized by the Alfvén radius RA, which may be calculated
from the balance of the ram pressure of the infalling matter and the magnetic field
pressure at the magnetospheric boundary: ρv2

f f (RA) = B2/8π . Making use of the
mass continuity equation in the shell, Ṁ = 4πR2ρ(R)v f f (R), and assuming a dipole
NS magnetic field, the standard result (Davidson and Ostriker 1973) is obtained:

RA =

(
µ2

Ṁ
√

2GM

)2/7

. (7.3)

The captured matter from the wind carries a specific angular momentum jw ∼ωBR2
B

(Illarionov and Sunyaev 1975). Depending on the sign of jw (prograde or retor-
grade), the NS can spin-up or spin-down. This regime of quasi-spherical accretion
occurs in bright X-ray pulsars with Lx > 4× 1036 erg s−1 (Burnard et al 1983;
Shakura et al 2012).

7.2.2 Subsonic (Settling) Accretion

If the captured wind matter behind the bow shock at RB remains hot (when the
plasma cooling time is much longer than the free-fall time, tcool � t f f ), a hot quasi-
static shell forms around the magnetosphere, and subsonic (settling) accretion sets
in (see Fig. 7.3). In this case, both spin-up and spin-down of the NS is possible, even
if the sign of jw is positive (prograde). The shell mediates the angular momentum
transfer from the NS magnetosphere via viscous stresses due to convection and tur-
bulence. In this regime, the mean radial velocity of matter in the shell ur is smaller
than the free-fall velocity u f f : ur = f (u)u f f , f (u) < 1, and is determined by the
plasma cooling rate near the magnetosphere (due to Compton or radiative cooling):

f (u)∼ [t f f (RA)/tcool(RA)]
1/3. (7.4)

In the settling accretion regime, the actual mass accretion rate onto the NS may be
significantly lower than the Bondi mass accretion rate,

Ṁ = f (u)ṀB . (7.5)

Settling accretion occurs for Lx < 4×1036 erg s−1 (Shakura et al 2012).
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Fig. 7.2 Supersonic (Bondi-Hoyle-Littleton) accretion onto a magnetized NS

Fig. 7.3 Subsonic settling accretion onto a magnetized NS

7.2.3 The Structure of a Subsonic Shell Around a Neutron Star
Magnetosphere

Let us consider the torques acting on a magnetized NS quasi-spherically accret-
ing from the stellar wind of an optical star. The wind matter is gravitationally cap-
tured by the moving NS, and a bow-shock is formed near the Bondi radius R∼ RB.
Suppose a quasi-spherical shell is formed around the NS magnetosphere as de-
scribed above. In such a shell, the temperature remains high (of the order of the
virial temperature, see Davies and Pringle (1981)), and the key question arises as to
whether the hot plasma may enter the magnetosphere. Two-dimensional calculations
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(Elsner and Lamb 1977) showed that hot monoatomic ideal gas is stable against the
Rayleigh-Taylor instability at the magnetospheric boundary, suggesting that plasma
cooling is needed for the plasma to enter the magnetosphere. However, a careful
consideration of 3D-calculations (Arons and Lea 1976) shows that the hot plasma is
marginally stable at the magnetospheric boundary (to within a 5% accuracy of these
calculations). Compton cooling and possible dissipative processes (magnetic recon-
nection, etc.) facilitate the plasma entering the magnetosphere. Below we show that
subsonic settling accretion from a hot shell enables NS spin-down.

In the zero approximation, we may neglect both rotation and radial motion of
matter in the shell and consider its structure in hydrostatic equilibrium. The velocity
of radial motion of matter in the shell ur is below the sound speed cs. Under these
assumptions, the characteristic heating/cooling time of the plasma should be shorter
than the characteristic free-fall time.

In the general case, there is gas pressure and anisotropic turbulent motion in the
shell, so Pascal’s law is violated. Then the hydrostatic equilibrium equation may
be derived from the equations of motion (7.54) with the stress tensor components
(7.57) – (7.59) and zero viscosity (see Section 7.3 for more detail):

− 1
ρ

dPg

dR
− 1

ρR2

d(Pt
‖R

2)

dR
+

2Pt
⊥

ρR
− GM

R2 = 0 (7.6)

Here Pg = ρc2
s/γ is the gas pressure and Pt stands for the contribution due to turbu-

lent motions:
Pt
‖ = ρ < u2

‖ >= ρm2
‖c

2
s = γPgm2

‖ (7.7)

Pt
⊥ = ρ < u2

⊥ >= ρm2
⊥c2

s = γPgm2
⊥ (7.8)

(< u2
t >=< u2

‖ > +2 < u2
⊥ > is the turbulent velocity dispersion while m2

‖ and m2
⊥

are the radial and tangential turbulent Mach numbers squared. For example, for
isotropic turbulence we have m2

‖ = m2
⊥ = (1/3)m2

t , where mt is the turbulent Mach
number). The total pressure is given by the sum of the gas and turbulent terms:
Pg + Pt = Pg(1 + γm2

t ). Generally, the turbulent Mach numbers in the shell may
depend on radius, however in our model we will treat them as constants. Moreover,
the turbulent heating (important from the dynamical point of view, see Section 7.7)
changes the physical parameters in real X-ray pulsars by less than a factor two.

In the first approximation, we assume that the entropy S in the shell constant. For
an ideal gas with the adiabatic exponent γ and the equation of state P = KeS/cV ργ ,
the density may be expressed as a function of temperature ρ ∼ T 1/(γ−1). Integrating
these hydrostatic equilibrium equations (7.6) yields:

RT
µm

=

(
γ−1

γ

)
GM
R

(
1

1+ γm2
‖−2(γ−1)(m2

‖−m2
⊥)

)
=

γ−1
γ

GM
R

ψ(γ,mt) .

(7.9)
(In this solution we have neglected the integration constant which is not important
deep inside the shell. It could be important in the outer parts of the shell, but as these
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parts are located close to the shock and near∼RB and are not spherically symmetric,
their structure should be calculated numerically).

Note that including turbulence somewhat decreases the temperature in the shell.
However, the most essential here is that the turbulent anisotropy, due to convection
in the stationary case changes the radial distribution of the angular velocity. Below
we will show that in the case of isotropic turbulence, the rotation of the shell can
be close to quasi-Keplerian, ω(R) ∼ R−3/2. In the case of strongly anisotropic tur-
bulence with m2

‖� m2
⊥, a distribution of the angular velocity with constant specific

angular momentum (isomomentum law), ω(R) ∼ R−2, may be established. Below
we will see that shells around real X-ray pulsars most likely have an isomomentum
angular velocity distribution.

Let us now determine how the density changes in a quasi-static shell in the in-
ner layers with R� RB. For a fully ionized gas with γ = 5/3, we find the density
changes as:

ρ(R) = ρ(RA)

(
RA

R

)3/2

(7.10)

and the gas pressure changes as:

P(R) = P(RA)

(
RA

R

)5/2

. (7.11)

These equations describe the structure of an ideal static adiabatic shell above the
magnetosphere. Of course, for R ∼ RB the problem becomes significantly non-
spherically symmetric, and to calculate the structure of the outer parts of the shell
numerical methods are required.

Corrections to the adiabatic temperature gradient due to convective transport of
energy in the shell are calculated in Section 7.6.

7.2.4 The Alfvén Surface

By definition, at the magnetospheric boundary (the Alfvén surface), the total
pressure (including isotropic gas pressure and the possibly anisotropic turbulent
pressure) is balanced by the magnetic field pressure B2/(8π):

Pg +Pt = Pg(RA)(1+ γm2
t ) =

B2(RA)

8π
. (7.12)

The magnetic field at the Alfvén radius is determined by the dipole magnetic
field of the neutron star and the field produced by currents flowing over the magne-
tosphere (in the magnetopause):

Pg(RA) =
K2

(1+ γm2
t )

B2
0

8π

(
R0

RA

)6

=
ρRT

µm
(7.13)
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where the dimensionless coefficient K2 takes into account the contribution from
the magnetospheric currents, and the factor 1/(1+ γm2

t ) appears due to turbulent
pressure. For example, in the model by Arons and Lea (1976) (see Eq.(31) in that
paper), K2 = (2.75)2 ≈ 7.56. Near the magnetospheric cusp (where the curvature
of the magnetic field lines is maximal), the size of the Alfvén surface is about 0.51
times the equatorial size (Arons and Lea 1976). Everywhere below we will assume
that RA is the equatorial Alfvén surface unless stated otherwise.

The plasma enters the magnetosphere mainly via the Rayleigh-Taylor instability.
In the stationary case, we may introduce a constant accretion rate Ṁ onto the neutron
star. From the continuity equation in the shell we find

ρ(RA) =
Ṁ

4πur(RA)R2
A
. (7.14)

Clearly, the radial velocity of the matter entering the magnetosphere is below
the free-fall velocity, therefore we introduce the dimensionless coefficient f (u) =
ur/
√

2GM/R < 1. Then the density at the magnetospheric boundary reads

ρ(RA) =
Ṁ

4π f (u)
√

2GM/RAR2
A

. (7.15)

For example, in the model Arons and Lea (1976) f (u) ≈ 0.1. In our case, at high
X-ray luminosities the dimensionless factor f (u) may be as high as≈ 0.5 (however,
still at luminosities below the critical value ∼ 4× 1036 erg s−1, for which settling
accretion may occur).

If we imagine that the magnetosphere is fully impenetrable and the accretion
rate in the shell Ṁ→ 0, then ur → 0 and f (u)→ 0. However, the density near the
magnetospheric boundary remains finite. In some sense, the matter leaks through
the magnetosphere onto the neutron star, and the leakage rate can be either very low
(Ṁ→ 0) or have a finite non-zero value (Ṁ 6= 0).

Eliminating density from equation (7.13) with the help of the continuity equation
and making use of (7.9) together with the definition of the dipole magnetic moment,

µ =
1
2

B0R3
0

(where R0 is the neutron star radius and B0 is the magnetic field at the NS pole,
which in the 3D-case is two times as high as the equatorial field), we find the ex-
pression for the Alfvén radius at the quasi-spherical accretion stage:

RA =

[
4γ

(γ−1)
f (u)K2

ψ(γ,mt)(1+ γm2
t )

µ2

Ṁ
√

2GM

]2/7

. (7.16)

It should be emphasized that when a hot shell is present, the Alfvén radius is
determined by the static gas pressure (and a possible contribution from turbulent
motions) at the magnetospheric boundary and has a certain value even for a zero
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mass accretion rate through the shell. The dependence of the factor f (u) on Ṁ in
the settling accretion regime with account for cooling will be obtained below (see
equation (7.29)). In the supersonic accretion (Bondi) regime, evidently, f (u) = 1.
Note that in the Bondi regime (Bondi 1952) a subsonic flow can be formed, but
with a smaller (compared to the maximum possible) accretion rate Ṁ. In the Bondi
regime (i.e. in the adiabatic regime without heating/cooling of the gas), the choice
of solution is determined by the boundary conditions.

7.2.5 The Mean Rate of the Flow of Matter Through the
Magnetosphere

In this Section, we will consider the case of isotropic turbulence, i.e., we will set
the factor Kt = ψ(γ,mt)(1+ γm2

t )ψ(γ,mt)(1+ γm2
t ) that enters the Alfvén radius

definition (7.16) equal to one.
As noted above, the plasma enters the magnetosphere of the slowly rotating neu-

tron star due to the Rayleigh-Taylor instability. The boundary between the plasma
and the magnetosphere is stable at high temperatures T > Tcr, but becomes unstable
at T < Tcr, and remains in a neutral equilibrium at T = Tcr (Elsner and Lamb 1977).
The critical temperature is:

RTcr =
1
2

cos χ

κRA

µmGM
RA

. (7.17)

Here κ is the local curvature of the magnetosphere, χ is the angle that the outer
normal to the magnetospheric surface makes with the radius-vector at a given point.
The effective gravity acceleration can be written as

ge f f =
GM
R2

A
cos χ

(
1− T

Tcr

)
. (7.18)

The temperature in the quasi-static shell is given by (7.9), and the condition for
magnetospheric instability can thus be rewritten as:

T
Tcr

=
2(γ−1)

γ

κRA

cos χ
< 1 . (7.19)

Consider, for example, the development of the interchange instability when cool-
ing (predominantly Compton cooling) is present. The temperature changes as (Kom-
paneets 1957; Weymann 1965):

dT
dt

=−T −Tx

tC
, (7.20)

where the Compton cooling time is
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tC =
3

2µm

πR2
Amec2

σT Lx
≈ 10.6[s]R2

9Ṁ−1
16 . (7.21)

Here me is the electron mass, σT is the Thomson cross section, Lx = 0.1Ṁc2 is the X-
ray luminosity, T is the electron temperature (which is equal to the ion temperature
since the timescale of electron-ion energy exchange here is the shortest possible), Tx
is the X-ray temperature and µm = 0.6 is the molecular weight. The photon temper-
ature is Tx = (1/4)Tcut for a bremsstrahlung spectrum with an exponential cut-off at
Tcut , typically Tx = 3−5 keV. The solution to equation (7.20) reads:

T = Tx +(Tcr−Tx)e−t/tC . (7.22)

We note that Tcr ∼ 30keV� Tx ∼ 3 keV, and see that for t ≈ 2tC the temperature
decreases down to Tx. In the linear approximation the temperature changes as:

T ≈ Tcr(1− t/tC) . (7.23)

Plugging this expression into (7.18), we find that the effective gravity acceleration
increases linearly with time as:

ge f f ≈
GM
R2

A

t
tC

cos χ . (7.24)

Correspondingly, the velocity of matter due to the instability growth increases with
time as:

ui =

t∫
0

ge f f dt =
GM
R2

A

t2

2tC
cos χ . (7.25)

Let us introduce the mean rate of the instability growth

< ui >=

∫
udt
t

=
1
6

GM
R2

A

t2

tC
=

1
6

GM
R2

AtC

(
ζ RA

< ui >

)2

cos χ . (7.26)

Here ζ . 1 and ζ RA is the characteristic scale of the instability that grows at the rate
< ui >. Therefore, for the mean instability growth rate at the linear stage, we find

< ui >=

(
ζ 2GM

6tC

)1/3

=
ζ 2/3

121/3

√
2GM
RA

(
t f f

tC

)1/3

cos χ . (7.27)

As the factor cos χ ' 1, we will omit it below. Here we have introduced the charac-
teristic time as

t f f =
R3/2

A√
2GM

, (7.28)

which is close to the free-fall time at a given radius. Therefore, the factor f (u)
becomes:
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f (u) =
< ui >

u f f (RA)
. (7.29)

Substituting (7.27) and (7.29) into (7.16), we find for the Alfvén radius in this
regime:

R(C)
A ≈ 1.37×109[cm]

(
ζ

µ3
30

Ṁ16

)2/11

. (7.30)

Plugging (7.30) into (7.29), we obtain the explicit expression for f (u) in the Comp-
ton coolingregime:

f (u)C ≈ 0.22ζ
7/11Ṁ4/11

16 µ
−1/11
30 . (7.31)

In the radiation cooling regime, the cooling time is

t(rad)
cool =

3kT
2µmneΛ(T )

=
√

T/Krad , (7.32)

where Λ(T ) ≈ 2.5× 10−27
√

T (in CGS units) is the radiation cooling factor (here
we take into account the Gaunt-factor and that the real cooling function at high tem-
peratures goes slightly higher than for a pure free-free emission). With this cooling
time, the temperature decreases as

dT
dt

=−Krad
√

T , (7.33)

yielding a non-exponential temperature decay with time

T
T0

=

(
1− 1

2
Kradt√

T0

)2

. (7.34)

In the linear approximation, when t� t(rad)
cool , we get for the radiation cooling law

T
Tcr

= 1− t

t(rad)
cool

, (7.35)

similarly to (7.23) for Compton cooling, and find that

R(rad)
A ≈ 1.05×109[cm]ζ 4/81

µ
16/27
30 Ṁ−6/27

16 , (7.36)

f (u)rad ≈ 0.1ζ
14/81

µ
2/27
30 Ṁ6/27

16 . (7.37)

A necessary condition for angular momentum removal from the magnetosphere
by convection in the shell is the subsonic settling of matter (the Mach number for
the settling velocity M ≡ ur/us < 1), a condition which for γ = 5/3 reduces to the
inequality f (u)< 1/

√
3. Clearly, for accretion rates about 1016 g s−1 and below this

condition is satisfied. It is also important to note that convection and removal of an-
gular momentum in the shell almost cease when the mean radial settling velocity of
matter ur becomes higher than the convective velocity uc, i.e., when the convective
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Mach number mc = uc/cs ∼mt is smaller than the usual Mach number M = ur/cs.
Oppositely, when the Mach number of the radial flow is smaller than the turbulent
Mach number M < mt ∼mc, angular momentum can be removed from the rotating
magnetosphere through the settling shell.

When the accretion rate in the shell exceeds some critical value, Ṁ > Ṁ†, the
velocity of the accreting matter near the Alfvén surface may exceed the speed of
sound, and a supersonic flow with free-fall velocity of the matter appears in some
layer above the magnetosphere. This prevents the angular momentum transfer out-
wards from the rotating magnetosphere. In this case, the settling accretion regime
cannot be realized: a shock emerges above the magnetosphere, and interaction of the
plasma with the magnetosphere must be treated following the scheme considered,
for example, in Burnard et al (1983). Depending on the character of the inhomo-
geneities in the captured stellar wind, the specific angular momentum of the matter
may be both positive and negative. Therefore, in the supersonic regime, intermittent
episodes of both NS spin-up and spin-down are possible.

By assuming a limiting value of the dimensionless settling velocity f (u)=0.5
(below which it is still possible to remove angular momentum from the rotating NS
magnetosphere, see Section 7.7 for more detail), from equation (7.29) we obtain a
maximum possible mass accretion rate in the settling regime with angular momen-
tum removal:

Ṁ†
16 ≈ 3.7ζ

−7/4K−1/8
t µ

1/4
30 . (7.38)

Note that a similar value for the critical accretion rate in the settling regime will
be obtained from a comparison of the characteristic Compton cooling time with the
time of convective motions near the Alfvén radius.

To conclude this Section, we note that low-luminosity X-ray pulsars may enter
the regime of plasma entry into the magnetosphere, due to radiative cooling, via a
change in the X-ray radiation beam structure when most of the X-ray photons form
a pencil-beam emission diagram illuminating the magnetospheric cusp. This makes
it possible to explain the temporal appearance of ‘switched-off’ states (with low X-
ray luminosity) in Vela X-1 and other X-ray pulsars, which display a phase jump in
their X-ray pulse profiles (Doroshenko et al 2011).

7.3 The Structure of a Quasi-spherical Rotating Shell with
Subsonic Accretion

In this Section, we will give a detailed derivation of the equations describing
the structure of a quasi-spherical shell in the settling accretion regime. We will use
the tensor components as measured by a physical observer (the velocity ua and the
viscous stress tensor components Wab)1

1 Not to be confused with the covariant components in curvilinear coordinates.
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7.3.1 Basic Equations

We start with writing down the Navier-Stokes equation in spherical coordinates
R,θ ,φ .

Due to the huge values of the Reynolds number in the shell (∼ 1015− 1016 for
typical accretion rates 1017 g s−1 and magnetospheric radii ∼ 108 cm), strong tur-
bulence develops in the shell. In this case, the Navier-Stokes equations are referred
to as Reynolds equations. In the general case, the turbulent viscosity depends on the
coordinates. Therefore the hydrodynamical equations take the form:

1. The continuity equation:

∂ρ

∂ t
+

1
R2

∂

∂R

(
R2

ρur
)
+

1
Rsinθ

∂

∂θ
(sinθ ρuθ )+

1
Rsinθ

∂ρuφ

∂φ
= 0. (7.39)

2. The R-component of the equation of motion:

∂ur

∂ t
+ur

∂ur

∂R
+

uθ

R
∂ur

∂θ
+

uφ

Rsinθ

∂ur

∂φ
−

u2
φ
+u2

θ

R
=−GM

R2 +NR (7.40)

3. The θ -component of the equation of motion:

∂uθ

∂ t
+ur

∂uθ

∂R
+

uθ

R
∂uθ

∂θ
+

uφ

Rsinθ

∂uθ

∂φ
+

uruθ −u2
φ

cotθ

R
= Nθ (7.41)

4. The φ -component of the equation of motion:

∂uφ

∂ t
+ur

∂uφ

∂R
+

uθ

R
∂uφ

∂θ
+

uφ

Rsinθ

∂uφ

∂φ
+

uruφ +uφ uθ cotθ

R
= Nφ (7.42)

Here, the physically measurable components of forces (including the viscous
force and pressure gradient) are written in the form:

ρNR =
1

R2
∂

∂R

(
R2WRR

)
+

1
sinθ R

∂

∂θ
(WRθ sinθ)+

1
sinθ R

∂

∂φ
WRφ −

Wθθ

R
−Wφφ

R
(7.43)

ρNθ =
1

R2
∂

∂R

(
R2WθR

)
+

1
sinθ R

∂

∂θ
(Wθθ sinθ)+

1
sinθ R

∂

∂φ
Wθφ−cotθ

Wθθ

R
+cotθ

Wφφ

R
(7.44)

ρNφ =
1

R3
∂

∂R

(
R3WφR

)
+

1
sinθ R

∂

∂θ

(
Wφθ sinθ

)
+

1
sinθ R

∂

∂φ
Wφφ (7.45)

The physically measurable components of the stress tensors include both the gas
pressure Pg (we assume it to be isotropic) and the pressure due to turbulent degrees
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of freedom Pt (generally, anisotropic). These components are determined following
the classical Landau and Lifshitz (1987) treatment, however, with account for the
anisotropic turbulent pressure:

WRR =−Pg−Pt
RR +2ρνt

∂ur

∂R
− 2

3
ρνtdivu (7.46)

Wθθ =−Pg−Pt
θθ +2ρνt

(
1
R

∂uθ

∂θ
+

ur

R

)
− 2

3
ρνtdivu (7.47)

Wφφ =−Pg−Pt
φφ +2ρνt

(
1

Rsinθ

∂uφ

∂φ
+

ur

R
+

uθ cotθ

R

)
− 2

3
ρνtdivu (7.48)

WRθ = ρνt

(
1
R

∂ur

∂θ
+

∂uθ

∂R
− uθ

R

)
(7.49)

Wθφ = ρνt

(
1

Rsinθ

∂uθ

∂φ
+

1
R

∂uφ

∂θ
− uφ cotθ

R

)
(7.50)

WRφ = ρνt

(
1

Rsinθ

∂ur

∂φ
+

∂uφ

∂R
− uφ

R

)
. (7.51)

In the problem considered here, the turbulence is such that Pt
RR =Pt

‖, Pt
θθ

=Pt
φφ

=

Pt
⊥. The turbulent pressure components can be expressed via turbulent Mach num-

bers and will be presented in Section 7.6.
In spherical coordinates, the velocity divergence divu reads:

divu =
1

R2
∂

∂R

(
R2ur

)
+

1
Rsinθ

∂

∂θ
(sinθ uθ )+

1
Rsinθ

∂uφ

∂φ
. (7.52)

7.3.2 Symmetries of the Problem

Let us consider a spherically symmetric (
∂

∂φ
= 0), stationary(

∂

∂ t
= 0) and purely

radial gas accretion (uθ = 0). For such a problem setup, the continuity equation
(7.39) is:

Ṁ = 4πR2
ρur = const . (7.53)

The constant in this expression is determined by the conditions of plasma entering
the magnetosphere.

The Reynolds equations under these assumptions read as follows. The R-component
of the equation of motion (7.40) is:
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ρ

(
ur

∂ur

∂R
−

u2
φ

R

)
=−ρ

GM
R2 +

1
R2

∂

∂R

(
R2WRR

)
+

1
sinθ R

∂

∂θ
(WRθ sinθ)−Wθθ

R
−Wφφ

R
.

(7.54)
The θ -component of the equation of motion (7.40) is:

−ρ
u2

φ
cotθ

R
=

1
R2

∂

∂R

(
R2WθR

)
+

1
sinθ R

∂

∂θ
(Wθθ sinθ)− cotθ

Wθθ

R
. (7.55)

The φ -component of the equation of motion (7.40) is:

ρ

(
ur

∂uφ

∂R
+

uruφ

R

)
=

1
R3

∂

∂R

(
R3WφR

)
+

1
sinθ R

∂

∂θ

(
Wφθ sinθ

)
(7.56)

The components of the viscous stress tensor take the form:

WRR =−Pg−Pt
‖−

4
3

ρνt

(
ur

R
− ∂ur

∂R

)
(7.57)

Wθθ =−Pg−Pt
⊥+

2
3

ρνt

(
ur

R
− ∂ur

∂R

)
(7.58)

Wφφ =−Pg−Pt
⊥+

2
3

ρνt

(
ur

R
− ∂ur

∂R

)
(7.59)

WRθ = ρνt
1
R

∂ur

∂θ
(7.60)

Wθφ = ρνt

(
1
R

∂uφ

∂θ
− uφ cotθ

R

)
(7.61)

WRφ = ρνt

(
∂uφ

∂R
− uφ

R

)
(7.62)

Equations (7.57)-(7.62) relate the components of the stress tensor Wik to the strain
tensor (the rate of the shear tensor) Sik = (1/2)(∂ui/∂xk +∂uk/∂xi):

Wik =−2ρνtSik (7.63)

Here
νt '

1
3

ut lt (7.64)

is the turbulent viscosity coefficient, lt is the size of the largest eddies, and ut is
the magnitude of velocity pulsations on the scale of these eddies (see, for example,
Thorne and Blandford (2017), chapter 15). The coefficient νt is determined by the
properties of the turbulent flow itself, which is different from the kinematic viscosity
coefficient, which is determined by the intrinsic property of the fluid. To describe the
Reynold stresses for an anisotropic eddy viscosity, instead of one turbulent viscosity
coefficient, 81 independent parameters (components of a 4th-rank tensor) appear
(see, for example, Monin and I’Aglom (1971) ). Unfortunately, there is no theory
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of turbulence. To describe turbulent stresses, empirical formulas that can be tested
experimentally are employed.

L. Prandtl in his studies of plane-parallel flows (along the x-axis, for example)
introduced relations between the turbulent mixing length lt , the velocity of turbulent
pulsations ut and the characteristic velocity shear in the direction perpendicular to
the mean flow (z):

ut = lt

∣∣∣∣du
dz

∣∣∣∣ . (7.65)

Then the turbulent viscosity coefficient reads:

νt =C0l2
t

∣∣∣∣du
dz

∣∣∣∣ (7.66)

where C0 ∼ 1 is a universal dimensionless constant, the precise value of which
should be determined from the presently non-existent theory of turbulence. Thus,
the turbulent stresses depend quadratically on the shear amplitude,

Wzx = ρC0l2
t

(
du
dz

)2

, (7.67)

and a non-linearity appears that in the general case strongly complicates the prob-
lem. Here we should stress that in fact expression (7.67) for Wzx is not a component
of some tensor any more, and can be applicable only in a particular coordinate sys-
tem.

Consider a possible generalization of Prandtl’s law for turbulent viscosity in the
case of an axially symmetric flow. If turbulence is strongly anisotropic, there ex-
ists one more empirical law for turbulent viscosity, Wasiutynski’s law (see below),
which does not reduce to Prandtl’s law for isotropic turbulence. This more general
case for anisotropic turbulence will be discussed separately in Section 7.5.

7.4 Structure of the Shell for Prandtl’s Turbulent Viscosity

7.4.1 The Empirical Prandtl Law for Turbulent Viscosity in Axially
Symmetric Flows

Consider an axially symmetric flow with a very high Reynolds number. By gen-
eralizing Prandtl’s law for turbulent velocity derived for plane-parallel flows, we
can write the turbulent velocity scaling in the form: ut ∼ ltR(∂ω/∂R). Using gas-
dynamical similarity laws, we assume lt ∼ R, so that

ut =C1R2
∣∣∣∣∂ω

∂R

∣∣∣∣ . (7.68)
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Note that in our case the turbulent velocity is determined by convection, and ut .
0.5u f f (see Section 7.7). This means that the constant C1

C1 ∼ ut/〈uφ 〉, (7.69)

can be very large since 〈uφ 〉 � ut . Therefore, the turbulent viscosity coefficient is
equal to

νt = 〈ut lt〉=C2C1R3
∣∣∣∣∂ω

∂R

∣∣∣∣ (7.70)

Here C2 ≈ 1/3 is a numerical factor arising from statistical averaging. Below we
will use the new coefficient C =C1C2 which can be much larger than one.

For this viscosity law the turbulent stresses WRφ are:

WRφ = ρνtR
∂ω

∂R
= ρCR4

(
∂ω

∂R

)2

. (7.71)

Note that in axially symmetric flows with angular momentum increasing out-
wards (in particular, in Keplerian flows), a stabilization of the flow appears (Zel-
dovich 1981) which is absent in plane-parallel flows. The stabilization criterion can
be characterized by the dimensionless ratio of two energies, the ‘Taylor number’,
according to Zeldovich, Ty = Es/Et . Here Es is a measure of the flux stabilization,
the kinetic energy needed to interchange two adjacent parcels of gas of mass m, a
and b, by a distance ∆r� r, while keeping the specific angular momentum j = ωr2

constant,

Es =
1
2

m(u′2a −u2
a)+

1
2

m(u′2b −u2
b)' 2m

ω

r
d(ωr2

dr
(∆r)2 (7.72)

(here ua,b = ja,b/ra,b and u′a,b = ja,b/rb,a are the velocities before and after the
change in positions). The energy Et is the energy dissipated in, for example, chaotic
turbulent motions (see Zeldovich (1981) for more detail):

Et =
1
2

m(u2
a− (ua′′)2 +

1
2

m(u2
b− (ub′′)2 (7.73)

where u and u′′ are velocities after ω smoothing, which are defined by

j = m(r2
a + r2

b)ω = mr2
aωa +mr2

bωb . (7.74)

Finally, we obtain2

Ty =
Es

Et
= 4

d(ωr2)2/dr
r5(dω/dr)2 . (7.75)

The Taylor number is analogous to the gradient Richardson number, which is

2 Not to be confused with the standard definition of the Taylor number in viscous Taylor-Couette
flows, Ta = 4 ω2r4

ν
.
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Ri =
N2

(du/dr)2 , (7.76)

where N is the Brunt-Väisälä frequency,

N2 =
g
T

(
∂T
∂ r

+
g
cp

)
, (7.77)

and du/dr is the mean vorticity. Following Bradshaw (1969), it is possible to define
another analogue to the Richardson number as

′Ri′ =
κ2

(du/dr)2 , (7.78)

where

κ2 =
1
r3

d(ωr2)2

dr
(7.79)

is the epicyclic frequency. Clearly, ′Ri′ = 1/4Ty.

7.4.2 The Angular Momentum Transfer Equation

A similar problem (rotation of a sphere in a viscous fluid) is solved in Landau
and Lifshitz (1987). It is shown there that in this problem the variables may be
separated, and one can write uφ (R,θ) = uφ (R)sinθ . Note that the angular velocity
ω(R) = uφ (R)/R is independent of the polar angle θ . Our problem setup is different
from the rotation of a sphere in a viscous fluid in several aspects: 1) there is a gravity
force, 2) the turbulent viscosity changes with the distance R and, in general, may
depend on the angle θ , and 3) there is radial motion of matter (accretion). These
differences lead, as we will show below, to a radial dependence of the rotational
velocity uφ (R) ∝ R−1/2. (Recall that uφ ∝ R−2 in the case of a rotating sphere in a
viscous fluid).

We start by solving equation (7.56). At first, note that in order to have uφ (θ) ∼
sinθ , according to (7.61), we must have Wθφ = 0. Next, using the continuity equa-
tion (7.53) and the definition of the angular velocity, we can write equation (7.56)
in the form of the equation of angular momentum transfer by viscous forces:

Ṁ
R

∂

∂R
ωR2 =

4π

R
∂

∂R
R3WRφ . (7.80)

We may integrate equation (7.80) over R to obtain

ṀωR2 = 4πR3WRφ +D , (7.81)

were D is an integration constant. We then rewrite equation (7.62) using the deriva-
tive of the angular velocity:
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WRφ = ρνtR
∂ω

∂R
. (7.82)

Substituting this expression into (7.81) yields

ṀωR2 = 4πρνtR4 ∂ω

∂R
+D . (7.83)

This equation for the viscous angular momentum transfer is similar to the one for ac-
cretion discs (Shakura and Sunyaev 1973) but, however, differs due to the spherical
symmetry of the problem under consideration.

The left-hand side of equation (7.83) describes the advective transfer of the an-
gular momentum averaged over the sphere (1/2

∫
π

0 ωR2 sin2
θ sinθdθ = (1/3)ωR2)

during the mean motion towards the gravitating centre (accretion). The accretion
rate Ṁ here is negative, as well as the value of the derivative ∂ω

∂R . The first term
on the right-hand side describes the angular momentum transfer outwards by the
turbulent viscosity force.

The constant D is determined from the equation

D = K1K2

(
uc

u f f

)
µ2

R3
A

ωm−ω∗

ωK(RA)
(7.84)

(see equation (7.185)). Here we consider accretion onto a magnetized neutron star.
For D < 0, the advective term on the left-hand side of (7.83) dominates over the vis-
cous angular momentum transport outwards. Oppositely, for D> 0, the viscous term
in (7.83) dominates. In the case Ṁ = 0 (when no plasma enters the magnetosphere),
there is only viscous angular momentum transfer.

Now we rewrite (7.84) in the form

D = K1K2

(
uc

u f f

)
µ2

R6
A

R3
A

ωm−ω∗

ωK(RA)
(7.85)

and use the pressure balance condition

P(RA) = Pg(RA)(1+ γm2
t ) =

B2(RA)

8π
=

K2

2π

µ2

R6
A
. (7.86)

Using the continuity equation in the form

|Ṁ|= 4πR2
ρ f (u)

√
GM/R ,

and the gas pressure equation (7.13), we can recast the integration constant D/|Ṁ|
to the form

D
|Ṁ| = K1K2

(
uc

u f f

)
(γ−1)

γ
ψ(γ,mt)

(ωm−ω∗)R2
A

2
√

2 f (u)
(1+ γm2

t ) . (7.87)
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Consider the rotation of a neutron star near equilibrium with ω̇∗ = 0. In this case,
from equation (7.188) we find

ωm−ω
∗ =− z

Z
ω
∗ , (7.88)

hence using the expression for Z (7.187) we obtain:

D
|Ṁ| =−zR2

Aω
∗ . (7.89)

We stress that for equilibrium neutron star rotation the value of the constant D is
fully determined by the dimensionless specific angular momentum of matter near
the Alfvén surface z.

7.4.3 The Rotation Law in the Shell

Equation (7.83) can be used to find the rotation law in the shell ω(R). At large
distances, R� RA (remember that RA determines the location of the shell base), the
constant D is small compared to other terms, and we can set D ≈ 0. Thus, when
deriving the rotation law, we will neglect this constant in the right-hand side of
equation (7.83). Next, we substitute (7.70) and the density distribution (which, as
we show below, does not differ from the hydrostatic distribution)

ρ(R) = ρ(RA)

(
RA

R

)3/2

(7.90)

into equation (7.83). We thus obtain:

∣∣Ṁ∣∣ωR2 = 4πρ(RA)

(
RA

R

)3/2

CR7
(

∂ω

∂R

)2

. (7.91)

After integration of this non-linear equation, we find

2ω
1/2 =±4

3
K1/2

R3/4 +D1 , (7.92)

where

K =
|Ṁ|

4πρ(RA)CR3/2
A

(7.93)

and D1 is the integration constant. In equation (7.92) we choose only the positive
solution (the sign minus with constant D1 > 0 corresponds to a solution with angular
velocity increasing outwards, which is possible if the neutron star spin period is very
large). If D1 6= 0, at large distances R�RA (near the external bow shock) solid-body
rotation would lead to ω → const ≈ ωB. (However, we remind the reader that our
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treatment is not applicable to the external shock region). At small distances from the
Alfvén surface, the influence of this constant is insignificant, and we will neglect it
below. Then we find

ω(R) =
4
9

|Ṁ|
4πρ(RA)CR3

A

(
RA

R

)3/2

= ωm(RA/R)3/2 (7.94)

i.e. a quasi-Kelperian rotation law, ω(R) ∼ R−3/2. The constant ωm in equation
(7.94) is obtained after plugging Ṁ from the continuity equation at R = RA into
equation (7.94):

ωm ≡ ω̃ω(RA) =
4
9

ω̃
|ur(RA)|

CRA
. (7.95)

(Here the correction factor ω̃ > 1 is introduced to account for the deviation of the
exact solution from the quasi-Keplerian law near RA).

As the radial velocity of the matter in the settling accretion regime ur(RA) is
smaller than the free-fall velocity, the above equation implies that ωm < ωK(RA),
i.e. smaller than the Keplerian angular rotation velocity. For a self-consistent solu-
tion, the coefficient C in Prandtl’s law should be determined, according to equation
(7.95), from the ratio of the radial velocity of the matter ur to the linear rotational
velocity uφ :

C =
4
9

ω̃
|ur(RA)|
ωmRA

=
4
9

ω̃
|ur(RA)|
uφ (RA)

. (7.96)

Note that this ratio is independent of the radius R and remains constant along the
shell radius. Indeed, the radial dependence of the velocity ur follows from the con-
tinuity equation with account for the density distribution (7.90)

ur(R) = ur(RA)

(
RA

R

)1/2

. (7.97)

For quasi-Keplerian rotation uφ (R)∼ 1/R1/2, and thus the ratio ur/uφ remains con-
stant.

Finally, the angular velocity of the shell near the magnetosphere ωm is related to
the angular velocity near the external shock as

ωm = ω̃ωB

(
RB

RA

)3/2

. (7.98)

In reality, when approaching RA, the integration constant D (that we have neglected
at large distances R� RA) should be taken into account. Therefore, the rotation
law near the magnetosphere should be somewhat different from the quasi-Keplerian
one.

We stress the principal difference of the accretion regime we consider from disc
accretion. In disc accretion, the radial velocity of the matter is much smaller than the
velocity of turbulent motions, and the tangential velocity is almost Keplerian and is
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much larger than the the turbulent velocity. In quasi-spherical subsonic accretion,
the radial velocity of the matter is not determined by the rate of angular momentum
transfer. Instead, the radial velocity depends solely on the ‘permeability’ of the neu-
tron star magnetospheric boundary to infalling plasma. In our case, it turns out to be
of the order of the velocity of convective motions in the shell. The tangential veloc-
ity in the quasi-Keplerian law obtained above is much smaller than the convective
velocities in the shell. Also note that in disc accretion the turbulence can be effec-
tively described by the single dimensionless parameter, α ≈ u2

t /u2
s with 0 < α < 1

(Shakura and Sunyaev 1973). The gas in an accretion disc rotates differentially with
a supersonic (almost Keplerian) velocity, whereas in our case the shell rotates dif-
ferentially with a significantly subsonic velocity at any radius, and the turbulence in
the shell is subsonic. It is also evident that our case is significantly different from
free-fall accretion onto the magnetosphere with the formation of a shock, which was
considered, for example, in Arons and Lea (1976).

7.4.4 The Case Without Accretion

We now consider the situation where the plasma cannot penetrate the magneto-
sphere and there is no accretion onto the neutron star. This case is similar to the
subsonic propeller considered in Davies and Pringle (1981). Then equation (7.83)
takes the form:

0 = 4πρνtR4 ∂ω

∂R
+D . (7.99)

(Remember that the constant D is determined by the neutron star spin-down rate,
D = Iω̇∗ < 0). Solving this equation as before, we obtain the rotational law in the
shell for the case without accretion:

ω(R) = ωm

(
RA

R

)7/4

, (7.100)

where

ωm =
I|ω̇∗|

7πρ(RA)νt(RA)R3
A
. (7.101)

From (7.70) we find:

νt(RA) =
7
4

CωmR2
A , (7.102)

therefore for ωm we get:

ωm =
2
7

(
I|ω̇∗|

πCρ(RA)R5
A

)1/2

. (7.103)

On the other hand, the angular velocity of matter near the magnetosphere ωm is
related to the parameters near the external shock as:
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ωm = ωB

(
RB

RA

)7/4

. (7.104)

A further discussion of this case and applications to possible observational evidence
of hot shells around non-accreting magnetized neutron stars can be found in Postnov
et al (2017).

7.5 The Structure of the Shell and the Rotation Law for
Wasiutynski’s Turbulent Viscosity Law

Parndtl’s rule for turbulent viscosity used above relates the scale and velocity of
turbulent pulsations to the mean angular rotational velocity of matter, and is suc-
cessfully applied in cases where the turbulence is generated by the shear flow itself.
In our problem, the turbulence arises due to large-scale convective motions in the
gravitational field. During radial convection, strongly anisotropic turbulent motions
may appear (the radial dispersion of the chaotic motions may be much larger than
the dispersion in the tangential direction), and Prandtl’s law may be inapplicable.
The anisotropic turbulence is much more complicated and poorly understood.

In the first approximation, we may use the empirical expression for the compo-
nent WRφ , derived by Wasiutynski (1946)3:

WRφ = ρ

(
νtR

dω

dR
+(νr−νt)

1
R

dωR2

dR

)
, (7.105)

or
WRφ = 2ρ(νr−νt)ω +νrρR

dω

dR
, (7.106)

where the radial and tangential kinematic viscosity coefficients are

νr =C‖〈|ut
‖|〉R

and
νt =C⊥〈|ut

⊥|〉R ,

respectively. The dimensionless constants C‖ and C⊥ are of the order of one. In the
isotropic case, νr = νt , WRφ ∼ dω/dR, and in the strongly anisotropic case, νr� νt ,
WRφ ∼ d(ωR2)/dR. Using these definitions and plugging (7.106) into (7.81), we
obtain:

ωR2
(

1− 2C⊥〈|ut
⊥|〉

|ur|

)
=C‖

〈|ut
‖|〉
|ur|

Rd(ωR2)

dR
− D
|Ṁ| . (7.107)

3 In Wasiutynski’s paper, all equations are written for covariant components of the stress tensor
τRφ , while here we, following Landau and Lifshits, write all values for physically measurable
components, i.e. WRφ = τRφ/(Rsinθ), etc.
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Note that due to the self-similar structure of the shell ut
‖ ∼ ut

⊥ ∼ ur ∼ R−1/2, and
therefore the ratios 〈|ut

‖|〉/ur and 〈|ut
⊥|〉/ur are constants. The above equation has

an obvious solution:

ωR2+
D
|Ṁ|

1

1−2C⊥
〈|ut
⊥|〉
|ur |

=

ωBR2
B +

D
|Ṁ|

1

1−2C⊥
〈|ut
⊥|〉
|ur |

(RB

R

) |ur |
C‖〈|ut

‖|〉

(
1−2C⊥

〈|ut
⊥|〉
|ur |

)

(7.108)
(here the integration constant is defined such that ω(RB) = ωB).

Now consider the equilibrium situation with ω̇∗ = 0. Then, as we remember,

D
|Ṁ| =−zω

∗R2
A ,ωm = (1− z/Z)ω∗ .

At first, consider the case of strongly anisotropic almost radial turbulence for
which 〈|ut

⊥|〉= 0. Here the specific angular momentum at the Alfvén radius is

ωmR2
A

1+
z

1− z/Z

(RB

RA

) |ur |
C‖〈|ut

‖|〉 −1

= ωBR2
B

(
RB

RA

) |ur |
C‖〈|ut

‖|〉 . (7.109)

We see that for very weak accretion (or in the limit when there is no accretion at all)
|ur| �C‖〈|ut

‖|〉, i.e. virtually isomomentum rotation is established in the shell.
The next case is when the anisotropy is such that C⊥〈|ut

⊥|〉/|ur| = 1/2. Then
a strictly isomomentum angular momentum distribution is established in the shell:
ωmR2

A = ωBR2
B.

If the turbulence is fully isotropic, then C⊥〈|ut
⊥|〉 = C‖〈|ut

‖|〉 = C̃〈|ut |〉. By de-
noting ε = |ur|/(C̃〈|ut |〉), we find:

ωmR2
A

[
1+
(

z
1− z/Z

)(
1

2/ε−1

)(
1−
(

RA

RB

)2−ε
)]

= ωBR2
B

(
RA

RB

)2−ε

.

(7.110)
Note that for ε → 0 (no accretion through the magnetosphere) ωm → ωB, i.e., we
get solid-body rotation without accretion (cf. the first case above). For ε = 3/2,
the rotation is almost quasi-Keplerian. Recall that quasi-Keplerian rotation was ob-
tained above using Prandtl’s turbulent viscosity prescription. Then it was the unique
solution. For anisotropic turbulence, in contrast, quasi-Keplerian rotation is a partic-
ular case of a more general solution that is obtained using Wasiutynski’s turbulent
viscosity law.

As shown in Shakura et al. (2012), the quasi-Keplerian rotation in the shell is
less favored by observations. Therefore, we conclude that in quasi-spherical shells
at the stage of subsonic settling accretion an almost isomomentum rotation, caused
by the anisotropic turbulence due to convection, is most likely.
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7.6 Corrections to the Radial Temperature Gradient

Let us estimate how strongly the temperature gradient in the shell differs from the
adiabatic law when convective motions are present. Multiplying equation (7.186) by
(1/2)(ωm−ω∗) yields the convection heating rate caused by the shell-magnetosphere
interaction:

Lc =
1
2

ZṀR2
A(ωm−ω

∗)2 . (7.111)

Multiplying the same equation (7.186) by ω∗ yields the rate of change of the neutron
star’s mechanical energy:

Lk = ZṀR2
Aω
∗(ωm−ω

∗) . (7.112)

Thus, the energy balance equation can be presented in the form:

Lt = Lc +Lk =
1
2

ZṀR2
A(ω

2
m−ω

∗2) . (7.113)

Note that the formula obtained for Lc looks like the equation describing the energy
release in the boundary layer of an accretion disc (Koh et al 1997; Shakura and
Sunyaev 1988).

The convective energy flux is

qc =
Lc

4πR2 =
ZṀR2

A(ωm−ω∗)2

8πR2 . (7.114)

On the other hand, the convective energy flux can be related to the entropy gradient
(see Shakura et al (1978)):

qc =−ρνcT
dS
dR

, (7.115)

where S is the specific entropy (per gram). Here νc is the radial thermal conductivity
coefficient,

νc =< uclc >=ChucR , (7.116)

where the characteristic scale of convection is lc ∼ R, the velocity of the convective
motions uc ∼ cs ∼ R−1/2, and Ch is a numerical factor of the order of one. Thus

νc = νc(RA)

(
R

RA

)1/2

. (7.117)

Next, make use of the thermodynamic identity for the specific enthalpy H:

dH
dR

=
1
ρ

dPg

dR
+T

dS
dR

. (7.118)

Recall that the enthalpy can be written in the form

dH = cpdT ,
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where

cp = T
(

∂S
∂T

)
p
=

γ

γ−1
R

µm

is the specific thermal capacity at constant pressure. We now express T (dS/dR)
from equation (7.115) and use the hydrostatic equilibrium equation (7.9) in the form

dPg/ρ

dR
=− R

µmcp

GM
R2 ψ(γ,mt)

to cast the identity (7.118) into the form

dT
dR

=− 1
cp

[
GM
R2 ψ(γ,mt)−

Zur(RA)

2νc(RA)

(
RA

R

)
R2

A(ωm−ω
∗)2
]
. (7.119)

By definition, the adiabatic temperature gradient is determined by the first term on
the right-hand side, (dT/dR)ad = g/cp. Equation (7.119) can be integrated to find
the real dependence of the temperature on radius in a convective shell:

T =
1
cp

[
GM
R

ψ(γ,mt)−
Zur(RA)

2νc(RA)
R3

A(ωm−ω
∗)2 ln

(
R

RA

)]
. (7.120)

Near the equilibrium (Iω̇∗ = 0) we may use equation (7.88) to obtain

T =
1
cp

[
GM
R

ψ(γ,mt)−
|ur(RA)|

2Chuc(RA)
ω
∗2R2

A
z2

Z
ln
(

R
RA

)]
. (7.121)

This solution shows that in the region between RA and RB in the shells around slowly
rotating X-ray pulsars (i.e. those in which ωm � ωK(RA)), the temperature distri-
bution is similar to the adiabatic law with a temperature gradient close to (but still
steeper, enabling convection) the adiabatic one (7.9):

T ≈ γ−1
γ

GM
RR

ψ(γ,mt) . (7.122)

Here we have taken into account only the energy release caused by the angular
velocity difference near the magnetosphere. In fact, there can be additional energy
sources in the shell, for example, heating of plasma due to magnetic reconnection
and turbulence (see Section 7.7), etc.

7.7 Dynamics of Static Spherically-symmetric Gas Flow

In this section, we will consider the gas-dynamic equations for a spherically sym-
metric flow of an ideal gas onto a Newtonian gravitating center. This problem was
first solved in the classical paper by H. Bondi (Bondi 1952) in the case of an adia-
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batic accretion. The adiabatic gas outflow from stars (stellar wind) was later studied
by E. Parker (Parker 1963). A detailed and thorough discussion of the problem can
be found in the monograph by V.S. Beskin (Beskin 2010). Here we will focus on
the role of gas cooling/heating near the Alfvén surface, including the effect of tur-
bulence/convection (generally, anisotropic) in the gas flow through a shell around
the magnetosphere around a rotating neutron star. As discussed above, at low X-ray
luminosities the quasi-static gas shell can remove angular momentum from the ro-
tating neutron star magnetosphere via convective turbulent motions of the gas. If the
mass accretion rate through the shell exceeds some critical value, strong Compton
cooling gives rise to the appearance of a free-fall zone above the magnetosphere,
and the angular momentum cannot be transferred upstream such a flow.

The equation of motion (7.54) in the absence of viscosity reads:

ur
dur

dR
=− 1

ρ

dPg

dR
− 1

ρ

dPt
‖

dR
−

2(Pt
‖−Pt

⊥)

ρR
− GM

R2 (7.123)

Here Pg = ρc2
s/γ is the gas pressure and Pt is the pressure due to turbulent pulsa-

tions, which in general may be anisotropic:

Pt
‖ = ρ < u2

‖ >= ρm2
‖c

2
s = γPgm2

‖ (7.124)

Pt
⊥ = 2ρ < u2

⊥ >= 2ρm2
⊥c2

s = 2γPgm2
⊥ (7.125)

(here < u2
t >=< u2

‖ > +2 < u2
⊥ > is the turbulent velocity dispersion, m2

‖ and m2
⊥

are radial and tangential Mach numbers squared).
From the first law of thermodynamics we find:

dE
dR

=
Pg

ρ2
dρ

dR
+T

dS
dR

, (7.126)

where the specific internal energy (per gram) is

E = cV T =
c2

s

γ(γ−1)
, (7.127)

and the specific thermal capacity (per gram) is

cV =
R

µm

1
γ−1

. (7.128)

From the second law of thermodynamics the change in the specific entropy of the
gas can be written through the rate of change of the specific heat dQ/dt [erg s−1 g−1]
as

T
dS
dR

=
dQ
dR

=
dQ/dt

ur
. (7.129)

Using the continuity equation



352 Shakura et al.

Ṁ = 4πR2
ρur , (7.130)

we find
1
ρ

dρ

dR
=− 2

R
− 1

2u2
r

du2
r

dR
. (7.131)

Making use of the relation c2
s = γRT , we finally obtain:

1
c2

s

dc2
s

dR
= (γ−1)

[
− 2

R
− 1

2u2
r

du2
r

dR

]
+

dQ/dt
urcV T

. (7.132)

Note that this equation can be also derived from the equation of state of an ideal gas
written in the form

Pg = KeS/cV ρ
γ , (7.133)

where K is some constant.
Using equation (7.132), the gas pressure gradient can be presented in the form:

1
ρ

dPg

dR
=

c2
s

cPur

dQ/dt
T

+ c2
s

[
− 2

R
− 1

2u2
r

du2
r

dR

]
(7.134)

Plugging (7.134) into the equation of motion finally yields:

1
2

1
u2

r

du2
r

dR
=

[
c2

s (1+ γm2
‖)
(

2
R −

dQ/dt
cPurT

)
−2c2

s
(m2
‖−m2

⊥)
R − GM

R2

]
/[

u2
r − c2

s (1+ γm2
‖)
]
. (7.135)

Also, note that in a strongly anisotropic case where m2
‖ = m2

t � m2
⊥, the role of the

turbulence increases compared to the isotropic case where m2
‖ = m2

⊥ = (1/3)m2
t .

We may also introduce the Mach number in the flow M ≡ ur/cs. Then from
equations (7.132) and (7.135) we can derive the equation for the Mach number:

[M 2−(1+γm2
‖)]

M 2
dM 2

dR ={
2
[
(γ−1)M 2−(γ+1)(m2

‖−m2
⊥)
]

R −
[
M 2+γ(1+γm2

‖)
]

cPT
dQ
dR −

(γ+1)GM
R2c2

s

}
, (7.136)

where we have used the substitution (dQ/dt) = ur(dQ/dR). Equations (7.132),
(7.135) and (7.136) can be applied to describe the dynamics of the accreting flow in
terms of pairs of independent variables (ur,cs), (ur,M ) or (cs,M ). Here we will
consider the behavior of the flow near the singular point only. To this goal, we can
use equation (7.135).

Equation (7.135) has one singular saddle point in which the denominator in the
right-hand side vanishes:

u2
r = c2

s (1+ γm2
‖) . (7.137)
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For a solution to exist in this point, the numerator in the right-hand side must also
vanish, which yields the quadratic equation for the flow velocity in the singular
point:

u2
r

2
R

(
1+(γ−1)m2

‖+m2
⊥

1+ γm2
‖

)
−ur

(
dQ/dt

cPT

)
− GM

R2 = 0 . (7.138)

Recall that in the adiabatic case (dQ/dt = 0) without turbulence, in the singular
point we would simply have

u2
r = c2

s =
GM
2R

. (7.139)

We stress that in the presence of turbulence, the velocity in the singular point in-
creases. For example, for γ = 5/3 and a strong anisotropic turbulence we find
u2

r = c2
s (1+(5/3)m2

‖); for an isotropic turbulence the correction is smaller: u2
r =

c2
s (1+(5/9)m2

t ). Due to turbulence, the transition through the sound velocity (the
sound point where u2

r = c2
s ) occurs above the saddle point, and there is no singularity

at the sound point.
The turbulent heating rate in the quasi-static shell c (dQ/dt)+t can be determined

as: (
dQ
dt

)+

t
=

1
2
< u2

t >

tt
, (7.140)

where the characteristic turbulent heating time is

tt = αt
R
ut

= αt
R

mtcs
. (7.141)

Here αt is a dimensionless constant determining the turbulent energy dissipation
rate, and the turbulent Mach number is m2

t ≡m2
‖+2m2

⊥. Thus, the turbulent heating
rate can be written in the form (

dQ
dt

)+

t
=

c3
s

2αtR
m3

t . (7.142)

In the case of Compton cooling we have(
dQ
dt

)−
C
=−cV (T −Tx)

tC
, (7.143)

were tC is the characteristic Compton cooling time (7.21).
Equation (7.138) can now be recast to the form

u2
r

2
R

(
1+(γ−1)m2

‖+m2
⊥

1+ γm2
‖

)
−u2

r
cs

ur

γ(γ−1)m3
t

2αtR
+

ur(1−Tx/T )
γtC

− GM
R2 = 0 .

(7.144)
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As we are studying an accretion processes, the sign of the velocity ur = dR/dt is
negative, ur = −|ur|. Then, the absolute value of the flow velocity at the singular
point where the sound velocity is cs/|ur|=−1/(1+ γm2

‖)
1/2 can be found from the

quadratic equation:

u2
r

2
R

(
1+(γ−1)m2

‖+m2
⊥

1+ γm2
‖

)
+u2

r
1

(1+ γm2
‖)

1/2

(γ−1)m3
t

2αtR
− |ur|(1−Tx/T )

γtC
−GM

R2 = 0 .

(7.145)
In this case, the solution to equation (7.138) reads:

|ur|=
R(1−Tx/T )

4γtCA
+

√
2GM

R

[
1

4A
+

R
2GM

R2(1−Tx/T )2

16γ2t2
CA2

]1/2

, (7.146)

where we have introduced the dimensionless factor

A =
1+(γ−1)m2

‖+m2
⊥

1+ γm2
‖

+
(γ−1)(m2

‖+2m2
⊥)

3/2

4αt(1+ γm2
‖)

1/2 . (7.147)

For isotropic turbulence with m‖ = m⊥ = 1/
√

3,mt = 1, for γ = 5/3 this factor is
A≈ 1.23, and for strongly anisotropic turbulence when m‖ = 1,m⊥ = 0,mt = 1, this
factor is A≈ 0.8.

In units of the free-fall velocity, the solution to equation (7.146) has the form:

f (u) =
|ur|
u f f

=
(1−Tx/T )

4γA

(
t f f

tC

)
+

1
2

[
1
A
+

(1−Tx/T )2

4γ2A2

(
t f f

tC

)2
]1/2

. (7.148)

With the onset of Compton cooling the temperature changes exponentially:

T = Tx +(Tcr−Tx)e−t/tC . (7.149)

When cooling is slow, t f f /tC � 1, the critical point lies under the Alfvén surface,
and through the flow down to the magnetosphere no transition through the sound
speed occurs. It is under such conditions that slow settling accretion can be realized.
If the critical point lies above the Alfvén surface, a supersonic transition in the flow
takes place before the flow encounters the magnetosphere, and thus the appearance
of a shock is expected. Both turbulence and rapid cooling shift the critical point
upstream the flow.

In the case of rapid cooling, t f f /tC� 1, T → Tx, so that ur/u f f ≈ 1/2 (cf. (7.139)
for an adiabatic flow), but the critical point lies above the Alfvén surface, and in the
flow above the magnetosphere a free-fall zone appears. The ratio f (u) = |ur|/u f f
reaches maximum at t f f /tC ≈ 0.46 for the typical temperature ratio Tcr/Tx = 10,
and depending on the value of the factor A = 0.8− 1.23 (anisotropic or isotropic
turbulence) it turns out to be equal to f (u) = 0.5−0.6.
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7.8 Physical Conditions in the Shell

To form a hot shell around a NS magnetosphere, the matter downstream the bow
shock at the gravitational capture radius should not cool down too rapidly and fall
freely towards the magnetosphere. In other words, the cooling time of the gas heated
up behind the shock tcool should exceed the plasma free-fall time.

Behind the front of a strong shock, the gas heats up to the temperature

Tps =
3

16
µm

v2
w

R
≈ 1.36×105[K]

( vw

100km/s

)2
. (7.150)

The radiation cooling time of a plasma is

tcool =
3kT

2µmneΛ
(7.151)

where ρ is the plasma density, ne = Yeρ/mp is the electron number density (in a
fully ionized solar plasma, the molecular weight is µm = 0.6 and the lepton number
is Ye ≈ 0.8); Λ is the cooling function of collisional equilibrium plasma that can be
approximated as (Raymond et al 1976; Cowie et al 1981)

Λ(T ) =


0,T < 104 K
1.0×10−24T 0.55,104 K < T < 105 K
6.2×10−19T−0.6,105 K < T < 4×107 K
2.5×10−27T 0.5,T > 4×107 K .

(7.152)

Compton cooling becomes effective starting from the radius Rx at which the gas
temperature T , determined from the hydrostatic formula (7.9), exceeds the Compton
temperature of radiation Tx. The Compton cooling time (see (7.21)) is:

tC ≈ 1060[s]Ṁ−1
16

(
R

1010cm

)2

. (7.153)

Compton heating starts above some radius Rx at which Tx = T . For the tempera-
ture distribution in the shell according to formula (7.9), we find Rx ≈ 2× 1010 cm.
Note that both Compton and photoionisation heating is controlled by the photoion-
ization parameter ξ (Tarter et al 1969; Hatchett et al 1976)

ξ =
Lx

neR2 . (7.154)

In most parts of the accreting flow the density follows the law n∼ R−3/2, therefore
ξ ∼ R−1/2, and with account for the continuity equation, ξ does not depend on the
X-ray luminosity. The characteristic value of ξ is:

ξ ≈ 5×105 f (u)R−1/2
10 . (7.155)



356 Shakura et al.

Should the Compton processes be effective everywhere, such a high value of
the photoionization parameter ξ would suggest that the plasma heats up to Comp-
ton temperatures of the order of several keV up to very large distances ∼ 1012 cm.
However, at large distances the Compton time exceeds the characteristic gas accre-
tion time:

tC
taccr

=
tC f (u)u f f

R
≈ 20 f (u)Ṁ−1

16 R1/2
10 , (7.156)

which means that Compton heating is ineffective in the falling matter. Therefore, far
from the magnetosphere the gas temperature is determined by the photoionization
only and cannot exceed Tmax ≈ 5×105 K (Tarter et al 1969), which is much smaller
than Tx ∼ 3 keV.

The effective gravitational capture radius corresponding to the sound velocity of
the gas in the photoionization heating region is

R∗B =
2GM

c2
s

=
2GM

γRTmax/µm
≈ 3.5×1012[cm]

(
Tmax

5×105K

)−1

. (7.157)

Everywhere up to the shock, photoionization keeps the temperature at about' Tmax.
The sound velocity corresponding to Tmax, is about 80 km s−1. If the stellar wind
velocity exceeds 80 km s−1, a bow shock arises near the Bondi radius with the post-
shock temperature given by formula (7.150). If the stellar wind velocity is below
this value, the shock disappears and accretion occurs from the region determined by
the effective radius R∗B.

The photoionization heating time at the effective Bondi radius 3×1012 cm is

tpi ≈
(3/2)kTmax/µm

(hνe f f −ζe f f )nγ σe f f c
≈ 2×104[s]Ṁ−1

16 . (7.158)

(here hνe f f ∼ 10 keV is the characteristic photon energy, ζ is the effective ionization
potential, σe f f ∼ 10−24 cm2 is the typical photoinization cross-section and nγ =
Lx/(4πR2hνe f f c) is the photon number density). The ratio of the photoionization
time to the accretion time at the effective Bondi radius is

tpi

taccr
≈ 0.07 f (u)Ṁ−1

16 . (7.159)

At stellar wind velocities vw > 80 km s−1 the shock arises near the classical
Bondi radius RB lying inside the effective Bondi radius R∗B, determined by formula
(7.157).

The radiation cooling time of plasma heated downstream the shock RB is ex-
pressed through the velocity of the stellar wind being captured vw as:

tcool ≈ 4.7×104[s]Ṁ−1
16 v0.2

7 . (7.160)

The photoionization heating time behind the shock front can also be expressed
through the wind velocity:
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tpi ≈ 3.5×104[s]Ṁ−1
16 v−4

7 . (7.161)

A comparison of these two characteristic times shows that at low wind velocities,
radiative plasma cooling is important, and free-fall supersonic (Bondi) accretion
onto the neutron star with conservation of the specific angular momentum of the
accreting matter sets in.

Thus, at low wind velocities the plasma behind the bow shock front cools down
and falls freely. When approaching the gravitational centre, the photoionization
heating becomes important, and the plasma temperature attains the level Tmax ≈
5×105 K. Should this occur at the radius Rpi corresponding to Tmax < GM/(RRpi),
the plasma with constant temperature Tmax continues falling freely towards the mag-
netosphere, above which a shock is formed. However, if Tmax > GM/(RRpi), the
subsonic settling accretion regime is possible even at low wind velocities.

For wind velocities vw & 100 km s−1, the gas temperature behind the shock ex-
ceeds Tmax, photoionization heating is unimportant, and the settling accretion regime
may be established in the shell if the radiation cooling time is longer than the accre-
tion time. By comparing these two time-scales, we obtain the critical mass accretion
rate, depending on the stellar wind velocity, below which the settling regime is pos-
sible:

Ṁ‡
16 . 0.12v3.2

7 . (7.162)

Here we should stress the difference between the critical mass accretion rate Ṁ‡

and the value Ṁ†, obtained above. For Ṁ > Ṁ‡ the plasma rapidly cools down in the
wind gravitational capture zone and falls freely towards the magnetosphere (unless
photoionization heats it up above the virial temperature), whereas for Ṁ > Ṁ† '
4× 1016 g s−1 determined by equation (7.38), a free-fall supersonic zone appears
immediately above the magnetosphere.

7.9 X-ray Emission and Quasi-periodic Pulsations from the Hot
Shell

The spectra of X-ray pulsars are dominated by the emission formed in accretion
columns near the surface of magnetized neutron stars. A hot optically thin shell
above the magnetosphere generates proper thermal emission. However, if all grav-
itational energy of the accreting matter were released in such a shell, its X-ray lu-
minosity would be reduced by a factor RNS/RA compared to the emission from the
accretion column, i.e. it would be less than one per cent of the total X-ray luminosity.
In addition, the shell should scatter the X-ray emission from the accretion column,
but for the scattering to be effective, the Comptonization parameter y should be of
the order of one. The Thomson optical depth in the shell is obviously very small.
Indeed, from the continuity equation, formula (7.16) for the Alfvén radius and equa-
tion (7.29) for the dimensionless factor f (u) at the subsonic settling accretion, we
find:
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τT =
∫ RB

RA

ne(R)σT dR≈ 3.2×10−3Ṁ8/11
16 µ

−2/11
30 .

Therefore, at temperatures near the magnetospheric boundary (see (7.9)) the Comp-
tonization parameter y is small:

y =
4kT
mec2 τT ≈ 2.4×10−3 .

This means that the X-ray spectrum generated in the zone of main accretion energy
release near the neutron star surface is not affected by scattering off electrons in the
hot shell.

Large-scale convective motions in the shell occur on a specific time scale of the
order of the free-fall time, which may give rise to features in the time variability
power density spectra (for example, quasi-periodic oscillations, QPOs). QPOs have
been detected in spectra of some X-ray pulsars (see e.g. Marykutty et al (2010) and
references therein). The expected QPO frequency should fall into the mHz range.
Such QPOs were indeed detected in some cases Sidoli et al (2016a).

A stronger effect may be related to the appearance of a dynamical instability in
the shell due to, for example, Compton cooling enhancement leading to a runaway
increase of the accretion rate through the shell. This instability would give rise to
a sharp increase in X-ray luminosity, as observed in SFXTs (see our discussion in
Section 7.10 for more detail).

7.10 Bright Flares in Supergiant Fast X-ray Transients

In this Section, we consider another possible application of the theory of subsonic
settling accretion to bright outbursts observed in supergiant fast X-ray transients
(Shakura et al 2014a).

Supergiant Fast X-ray Transients (SFXTs) are a subclass of HMXBs associated
with early-type supergiant companions (Pellizza et al 2006; Chaty et al 2008; Ra-
houi et al 2008), and characterized by sporadic, short and bright X–ray flares reach-
ing peak luminosities of 1036–1037 erg s−1. Most of them were discovered by IN-
TEGRAL (Molkov et al 2003; Sunyaev et al 2003; Grebenev et al 2003; Sguera et al
2005; Negueruela et al 2006). They show high dynamic ranges (between 100 and
10,000, depending on the specific source; e.g. Romano et al (2011, 2014)) and their
X-ray spectra in outburst are very similar to accreting pulsars in HMXBs. In fact,
half of them have measured neutron star spin periods similar to those observed from
persistent HMXBs (see Sidoli (2012) for a review).

The physical mechanism driving their transient behavior, related to the accretion
by the compact object of matter from the supergiant wind, has been discussed by
several authors and is still a matter of debate, as some of them require particular
properties of the compact objects hosted in these systems (Grebenev and Sunyaev
2007; Bozzo et al 2008), and others assume peculiar clumpy properties of the super-
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giant winds and/or special orbital characteristics (in’t Zand 2005; Walter and Zurita
Heras 2007; Sidoli et al 2007; Negueruela et al 2008; Ducci et al 2009; Oskinova
et al 2012).

The typical energy released in a SFXT bright flare is about 1038 − 1040 ergs
(Shakura et al 2014a), varying by one order of magnitude between different sources.
That is, the mass falling onto the NS in a typical bright flare varies from 1018 g to
around 1020 g.

The typical X-ray luminosity outside outbursts in SFXTs is about Lx,low '
1034 erg s−1 (Sidoli et al 2008), and below in this Section we shall normalize the
luminosity to this value, L34. At these low X-ray luminosities, the plasma entry rate
into the magnetosphere is controlled by radiative plasma cooling. Further, it is con-
venient to normalize the typical stellar wind velocity from hot OB-supergiants vw
to 1000 km s−1 (for orbital periods of about a few days or larger the NS orbital
velocities can be neglected compared to the stellar wind velocity from the OB-star),
so that the Bondi gravitational capture radius is RB = 2GM/v2

w = 4× 1010[cm]v−2
8

for a fiducial NS mass of Mx = 1.5M�.

7.10.1 Magnetospheric Shell Instability

Let us assume that a quasi-static shell hangs over the magnetosphere around the
NS, with the magnetospheric accretion rate being controlled by radiative plasma
cooling. We denote the actual steady-state accretion rate as Ṁa so that the ob-
served X-ray steady-state luminosity is Lx = 0.1Ṁac2. Then from the theory of
subsonic quasi-spherical accretion (Shakura et al 2012) we know that the factor
f (u) (the ratio of the actual velocity of plasma entering the magnetosphere, due
to the Rayleigh-Taylor instability, to the free-fall velocity at the magnetosphere,
u f f (RA) =

√
2GM/RA) reads (Shakura et al 2013a, 2014b)

f (u)rad ' 0.036ζ
7/11L2/9

34 µ
2/27
30 . (7.163)

(see also (7.37) above).
The shell is quasi-static (and likely convective). It is straightforward to calcu-

late the mass of the shell using the density distribution ρ(R) ∝ R−3/2 (Shakura et al
2012). Using the mass continuity equation to eliminate the density above the mag-
netosphere, we readily find

∆M ≈ 2
3

Ṁa

f (u)
t f f (RB) . (7.164)

Note that this mass can be expressed through measurable quantities Lx,low, µ30 and
the (not directly observed) stellar wind velocity at the Bondi radius vw(RB). Using
(7.163) for the radiative plasma cooling, we obtain
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∆Mrad ≈ 8×1017[g]ζ−7/11L7/9
34 v−3

8 µ
−2/27
30 . (7.165)

This simple estimate (7.165) shows that for a typical wind velocity near the NS
of about 500 km s−1 the typical mass of the hot magnetospheric shell is around
1019 g, corresponding to 1039 ergs released in a flare if all the matter from the
shell is accreted onto the NS. Variations in stellar wind velocity between different
sources by a factor of∼ 2 would produce the one-order-of-magnitude spread in ∆M
observed in bright SFXT flares.

As noted in Shakura et al (2013a), if there is an unstable flow of matter through
the magnetosphere, a large quantity of X-ray photons produced near the NS surface
should rapidly cool down the plasma near the magnetosphere, further increasing
the plasma fall velocity uR(RA) and subsequently the NS accretion luminosity Lx.
Therefore, in a bright flare the entire shell may fall onto the NS from the outer
radius of the shell on the free-fall time scale t f f (RB) ∼ 1000 s. Clearly, the shell
will be replenished by new wind capture, so the flares will repeat as long as a rapid
mass-entry rate into the magnetosphere is sustained.

7.10.2 Magnetized Stellar Wind as the Flare Trigger

We suggest that the shell instability described above can be triggered by a large-
scale magnetic field sporadically carried by the stellar wind of the optical OB com-
panion. Observations suggest that about∼ 10% of hot OB-stars have magnetic fields
up to a few kG (see Braithwaite (2013) for a review and discussion). It is also well
known from Solar wind studies (see e.g. reviews Zelenyi and Milovanov (2004);
Bruno and Carbone (2013) and references therein) that the Solar wind patches car-
rying tangent magnetic fields has a lower velocity (about 350 km s−1) than the wind
with radial magnetic fields (up to ∼ 700 km s−1). Fluctuations of the density and
velocity of stellar winds from massive stars are known from spectroscopic observa-
tions (Puls et al 2008), and velocity fluctuations up to 0.1 v∞ ∼ 200− 300 km s−1

are typical.
The effect of the magnetic field carried by the stellar wind is twofold: first, it

may trigger rapid mass entry to the magnetosphere via magnetic reconnection (a
phenomenon well known in the Earth dayside magnetosphere, Dungey (1961)), and
secondly, the magnetized parts of the wind (magnetized clumps with a tangent mag-
netic field) have a lower velocity than the non magnetized ones (or the ones carrying
the radial field). As discussed in Shakura et al (2014a) and below, magnetic recon-
nection may increase the plasma fall velocity in the shell from inefficient, radiative-
cooling controlled settling accretion with f (u)rad ∼ 0.03−0.1, up to the maximum
possible free-fall velocity with f (u) = 1. In other words, during a bright flare sub-
sonic settling accretion turns into supersonic Bondi accretion. The second factor
(slower wind velocity in magnetized clumps with tangent magnetic field) strongly
increases the Bondi radius RB ∝ v−2

w and the corresponding Bondi mass accretion
rate ṀB ∝ v−3

w .
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Indeed, we may write down the mass accretion rate onto the NS in the unflaring
(low-luminosity) state as Ṁa,low = f (u)ṀB with f (u) given by expression (7.163)
and ṀB ' πR2

Bρwvw. Eliminating the wind density ρw using the mass continuity
equation, written for the spherically symmetric stellar wind from the optical star

with power Ṁo, and assuming a circular binary orbit, we arrive at ṀB' 1
4 Ṁo

(
RB
a

)2
.

Using the well-known relation for the radiative wind mass-loss rate from massive
hot stars Ṁo ' ε

L
cv∞

where L is the optical star luminosity, v∞ is the stellar wind
velocity at infinity, typically 2000-3000 km s−1 for OB stars and ε ' 0.4−1 is the
efficiency factor (Lamers et al 1976); in the numerical estimates below we shall
assume ε = 0.5. It is also possible to reduce the luminosity L of a massive star to
its mass M using the phenomenological relation (L/L�)≈ 19(M/M�)2.76 (see e.g.
Vitrichenko et al (2007)). Combining the above equations and using Kepler’s third
law to express the orbital separation a through the binary period Pb, we find for the
X-ray luminosity of SFXTs in the non-flaring state

Lx,low ' 5×1035[erg s−1] f (u)
(

M
10M�

)2.76−2/3

(
v∞

1000km s−1

)−1( vw
500km s−1

)−4( Pb
10d

)−4/3
, (7.166)

which for f (u) ∼ 0.03− 0.1 corresponds to the typical low-state luminosities of
SFXTs of ∼ 1034 erg s−1.

It is straightforward to see that a transition from the low state (subsonic accre-
tion with slow magnetospheric entry rate f (u) ∼ 0.03− 0.1) to supersonic free-
fall Bondi accretion with f (u) = 1, due to a velocity decrease by a factor of two
in the magnetized stellar wind would, for example, lead to a flaring luminosity of
Lx, f lare ∼ (10−30)×25Lx,low. This shows that the dynamical range of SFXT bright
flares (∼ 300−1000) can be naturally reproduced by the proposed mechanism.

7.10.3 Conditions for Magnetic Reconnection near the
Magnetosphere

For magnetic field reconnection to occur, the time the magnetized plasma spends
near the magnetopause should be at least comparable to the reconnection time,
tr ∼ RA/vr, where vr is the magnetic reconnection rate, which is difficult to assess
from first principles (Zweibel and Yamada 2009). In real astrophysical plasmas the
large-scale magnetic reconnection rate can be as high as vr ∼ 0.03−0.07vA (Zweibel
and Yamada 2009), and phenomenologically we can parametrize it as vr = εrvA with
εr ∼ 0.01− 0.1. The longest time-scale the plasma penetrating into the magneto-
sphere spends near the magnetopause is the instability time, tinst ∼ t f f (RA) f (u)rad
(Shakura et al 2012), so reconnection may occur if tr/tinst ∼ (u f f /vA)( f (u)rad/εr).
1. As close to RA (from its definition) vA ∼ u f f , we arrive at f (u)rad . εr as a nec-
essary condition for reconnection. According to (7.163), this condition is satisfied
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only at sufficiently low X-ray luminosities, pertinent to ‘quiet’ SFXT states. This
explains why in HMXBs with convective shells at higher luminosity (but still lower
than 4× 1036 erg s−1, at which settling accretion is possible), reconnection from
magnetized plasma accretion will not lead to shell instability, but only to a tem-
poral establishment of the ‘strong coupling regime’ of angular momentum transfer
through the shell, as discussed in Shakura et al (2012) and below in Section 7.11.
Episodic strong spin-ups, as observed in GX 301-2, may be manifestations of such
‘failed’ reconnection-induced shell instability.

Therefore, it seems likely that the key difference between steady HMXBs like
Vela X-1, GX 301-2 (showing only moderate flaring activity) and SFXTs is that
in the first case the effects of possibly magnetized stellar winds from optical OB-
companions are insignificant (basically due to the rather high mean accretion rate),
while in SFXTs with lower ‘steady’ X-ray luminosity, large-scale magnetic fields,
sporadically carried by clumps in the wind, can trigger SFXT flaring activity via
magnetic reconnection near the magnetospheric boundary. The observed power-law
SFXT flare distributions, discussed in Paizis and Sidoli (2014), with respect to the
log-normal distributions for classical HMXBs (Fürst et al 2010), may be related to
the properties of magnetized stellar wind and physics of its interaction with the NS
magnetosphere (Shakura et al 2014a; Sidoli et al 2016b).

7.11 Angular Momentum Transfer to the Neutron Star
Magnetosphere and Spin-up/Spin-down of X-ray Pulsars

Consider a quasi-static shell around a neutron star magnetosphere in which the
subsonic settling regime is established. We stress that in this regime, the accretion
rate onto the neutron star is determined by the gas density at the shell base, which
is directly related to the gas density downstream the bow shock in the stellar wind
in the gravitational capture region, and by the ability of the plasma to enter the
magnetosphere through the Alfvén surface.

The rotation law in the shell depends on the treatment of the turbulent viscosity
(see Section 7.5 if Prandtl’s law for isotropic turbulence is used), and also on any
possible turbulence anisotropy due to convection (Section 7.6). In the latter case, the
anisotropy gives rise to more powerful turbulence in the radial direction compared
to the tangential motions. Thus, as we have shown in Sections 7.4 and 7.5, a series
of solutions appears that describe the radial dependence of the angular velocity of
matter in a convective shell. Below we will use pure power-law rotation:

ω(R)∼ R−n . (7.167)

The quasi-Keplerian case corresponds to n = 3/2, and the isomomentum distribu-
tion to n = 2, which in some sense describe limiting cases of the possible solutions.

When approaching the bow shock, R → RB, the angular velocity of gas ap-
proaches the orbital angular velocity of the binary system (for simplicity, we con-
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sider circular orbits): ω → ωB. Near the bow shock the problem is no longer spher-
ically symmetric, the characteristics of the flow may be very complicated (parts of
the matter may, for example, bend the hot shell), and the solution should be sought
for numerically. As there are no such solutions at present, we will assume that the
assumption of power-law rotation in the shell is valid up to the bow shock located
at the Bondi radius RB:

RB ' 2GM/(V 2
w + v2

orb) ,

where Vw is the stellar wind velocity at the location of the neutron star orbit, and
vorb is the neutron star orbital velocity.

This means that the angular velocity of the rotation of the shell at the magneto-
spheric boundary ωm is related to the orbital angular velocity ωB as

ωm = ω̃ωB

(
RB

RA

)n

. (7.168)

(Here the numerical coefficient ω̃ > 1 takes into account the deviation of the rotation
law in the shell near the magnetsphere from a pure power-law dependence, see above
in Sections 7.4 and 7.5).

Let the neutron star magnetosphere rotate with the angular velocity ω∗ = 2π/P∗,
where P∗ is the neutron star spin period. The matter at the base of the shell rotates
with the angular velocity ωm, which, in general, differs from ω∗. If ω∗ > ωm, the
plasma-magnetosphere interaction provides angular momentum transfer from the
magnetosphere to the shell, and in the opposite case ω∗ < ωm – from the shell to the
magnetosphere.

In the general case, the coupling of the matter with the magnetosphere can
be moderate or strong. In the strong coupling regime, the toroidal magnetic field
component Bt is proportional to the poloidal component Bp, and we can write
Bt ∼ −Bp(ωm−ω∗)t, so that |Bt | can grow up to ∼ |Bp|. This regime may be re-
alized around a rapidly rotating magnetosphere, when the NS angular velocity ω∗

is comparable to or even exceeds the Keplerian angular frequency ωK(RA). In the
latter case, the so-called propeller regime sets in. In the moderate coupling regime,
plasma may enter the magnetosphere via instabilities at a rate faster than required
for the magnetic field toroidal component to grow to the value of the poloidal com-
ponent, therefore Bt < Bp.

7.11.1 The Case of Strong Coupling

Let us first consider strong coupling. In this case, powerful large-scale motions
of gas in the shell may lead to turbulent diffusion of the magnetic field and its dis-
sipation. This process is characterized by the turbulent diffusion coefficient of the
magnetic field ηt . Then the toroidal magnetic field (see, for example, Lovelace et al
(1995) and references therein) is
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Bt =
R2

ηt
(ωm−ω

∗)Bp . (7.169)

The turbulent magnetic diffusion coefficient is related to the kinematic viscosity
coefficient: ηt ' νt . The latter can be written in the form

νt =< ut lt > . (7.170)

According to the phenomenological Prandtl’s law connecting the mean characteris-
tics of a turbulent flow (the velocity ut , the characteristic spatial scale lt and shear
ωm−ω∗) we have:

ut ' lt |ωm−ω
∗| . (7.171)

In our case, the turbulence scale should be determined by the maximum scale
of the energy pumping into turbulent motions from the rotating non-spherical mag-
netosphere surface. This scale is determined by the velocity difference between the
rigidly rotating magnetosphere and the accreting matter which still does not interact
with the magnetosphere, i.e. lt ' RA. This scale determines the turn velocity of the
largest turbulent eddies, and on smaller scales a turbulence cascade develops. Plug-
ging this scale into equations (7.169)-(7.171) we find that in the strong coupling
regime Bt ' Bp.

The torque arising from the plasma-magnetosphere interaction acts on the neu-
tron star and changes its angular momentum according to the equation

Iω̇
∗ =

∫ BtBp

4π
ϖdS =±K̃(θ)K2

µ2

R3
A

(7.172)

where I is the moment of inertia of the neutron star, ϖ is the distance to the rota-
tional axis, and K̃(θ) is a numerical coefficient depending on the angle between the
rotational axis and the magnetic dipole axis. The coefficient K2 appears in (7.172)
for the same reason as in equation (7.13). The positive sign (spin-up) corresponds
to angular momentum transfer to the neutron star (ωm > ω∗). The negative sign
(spin-down) corresponds to angular momentum removal from the neutron star to
the surrounding shell (ωm < ω∗).

At the Alfvén radius, the matter enters the magnetosphere and acquires the an-
gular velocity of the neutron star rotation. Then it falls freely onto the neutron star
and supplies it with the angular momentum it acquired at the Alfvén radius RA from
the magnetospheric interaction. As a result, the neutron star spins up at a rate

Iω̇
∗ =+zṀR2

Aω
∗ (7.173)

where z is a numerical coefficient taking into account the specific angular momen-
tum of the infalling matter. If the matter falls from the magnetospheric equator,
z = 1; if the matter falls strictly along the neutron star spin axis, z = 0. If all the
matter would enter evenly across a spherical magnetosphere, then we would have
z = 2/3.
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Finally, we find that the total torque applied to the neutron star in the strong
coupling regime changes the neutron star spin at a rate

Iω̇
∗ =±K̃(θ)K2

µ2

R3
A
+ zṀR2

Aω
∗ . (7.174)

Using (7.16), we may exclude Ṁ from this equation to obtain in the spin-up
regime (ωm > ω∗)

Iω̇
∗ =

K̃(θ)K2µ2

R3
A

[
1+ z

4γ f (u)√
2(γ−1)(1+ γm2

t )ψ(γ,mt)K̃(θ)

(
RA

Rc

)3/2
]

(7.175)

where R3
c = GM/(ω∗)2 is the corotation radius. In the spin-down regime (ωm < ω∗)

we find

Iω̇
∗ =− K̃(θ)K2µ2

R3
A

[
1− z

4γ f (u)√
2(γ−1)(1+ γm2

t )ψ(γ,mt)K̃(θ)

(
RA

Rc

)3/2
]
.

(7.176)
Note that in both cases RA should be smaller than Rc; if not, the propeller regime

would set in, and accretion would stop. In the propeller regime RA > Rc, the matter
does not fall onto the neutron star surface, and there is no powerful generation of
X-ray emission. In this case, the shell downstream the bow shock can cool down
rapidly (see below) likely giving rise to the standard Illarionov-Sunyaev propeller
regime (Illarionov and Sunyaev 1975), which is accompanied by the outflow of
matter from the magnetosphere.

In both regimes (spin-up and spin-down), the neutron star angular velocity
ω∗ approaches the angular velocity of matter at the magnetospheric boundary,
ω∗→ ωm(RA). The difference between ω∗ and ωm is small, and therefore the sec-
ond term in the square brackets in equations (7.175) and (7.176) is much smaller
than one. Also note that by approaching the propeller regime (RA→ Rc) the accre-
tion rate decreases, f (u)→ 0, the second term in the square brackets vanishes, and
the evolution of the neutron star spin is determined solely by the braking torque
−K̃(θ)µ2/R3

A. (In the propeller regime ωm < ωK(RA), ωm < ω∗, ω∗ > ωK(RA)).
Therefore, the neutron star spins down until reaching the Keplerian frequency at
the Alfvén radius. In this regime, the specific angular momentum of matter moving
towards or outwards from the magnetosphere is, of course, conserved.

Near the equilibrium (ω∗ ∼ ωm), relatively small fluctuations of the mass accre-
tion rate Ṁ in the shell give rise to a very strong fluctuations in the pulsar frequency
ω̇∗ since the toroidal component of the magnetic field can change the sign from
+Bp to −Bp. If the strong coupling regime can indeed happen in nature, this could
be its distinctive feature. It is known (see, for example, Bildsten et al (1997) and on-
line Fermi/GBM data 4 that real X-ray pulsars sometimes display rapid transitions
from spin-up to spin-down without a corresponding change in X-ray luminosity. It

4 http://gammaray.nsstc.nasa.gov/gbm/science/pulsars/lightcurves/
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is not excluded that strong coupling may switch-on due to the magnetic field frozen
in the plasma that has not yet entered the magnetosphere. Some thoughts regarding
accretion of a magnetized plasma onto a rotating neutron star magnetosphere can be
found in Ikhsanov and Beskrovnaya (2012).

7.11.2 The Case of Moderate Coupling

The strong coupling regime considered above can be realized in the limiting case
where the toroidal magnetic field Bt reaches a maximum possible value∼ Bp due to
magnetic turbulent diffusion. Usually, the plasma coupling with the magnetosphere
is mediated by various instabilities, whose characteristic growth time is insufficient
for the toroidal time to increase significantly. As discussed above in Section 7.2.3,
the shell at the magnetosphere is very hot, so without cooling the plasma turns out
to be marginally stable with respect to the Rayleigh-Taylor instability (see, e.g., the
model calculations in Arons and Lea (1976)).

The torque due to magnetic forces applied to the neutron star reads:

Iω̇
∗ =

∫ BtBp

4π
ϖdS (7.177)

where Bt is the toroidal magnetic field component which arises if there is a dif-
ference between the angular velocity of matter ωm and the magnetosphere angular
velocity ω∗. On the other hand, there is a mechanical torque acting on the magneto-
sphere from the base of the shell caused by the turbulent stresses WRφ :∫

WRφ ϖdS , (7.178)

where the viscous turbulent stresses can be written as

WRφ = ρνtR
∂ω

∂R
. (7.179)

To specify the turbulent viscosity coefficient

νt = 〈uclt〉 , (7.180)

we assume that the characteristic scale of turbulence close to the magnetosphere is

lt = ζdRA , (7.181)

where we have introduced the dimensionless factor ζd . 1, characterizing the size
of the zone in which there is an effective exchange of angular momentum between
the magnetosphere and the shell base. The characteristic velocity of the turbulent
pulsations uc is determined by the mechanism of turbulence in the plasma above
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the magnetosphere. In the case of strong convective motions in the shell, caused by
heating of its base, uc ∼ cs, where cs is the sound speed.

Equating the torques (7.177) and (7.178) and allowing for (7.179) and (7.181),
we get

ρucζdR2
A

∂ω

∂R
=

BtBp

4π
(7.182)

We now eliminate the density from this expression using the pressure balance at the
magnetospheric boundary and the expression for the temperature (7.9), and make
the substitution

∂ω

∂R
=

ωm−ω∗

ζdRA
. (7.183)

Then we find the relation between the toroidal and poloidal components of the
magnetic field in the magnetosphere:

Bt

Bp
= K2

γ√
2(γ−1)

(
uc

u f f

)(
ωm−ω∗

ωK(RA)

)
. (7.184)

(Note that there is no dependence on the width of the layer characterized by the
parameter ζd). Substituting (7.184) into (7.177), the spin-down rate of the neutron
star may be written as:

Iω̇
∗ = K1K2

(
uc

u f f

)
µ2

R3
A

ωm−ω∗

ωK(RA)
. (7.185)

where K1 ∼ 1 is a constant arising from integration of the torques over the surface
of the magnetosphere.

Using the definition of the Alfvén radius RA (7.16) and the expression for the
Keplerian frequency ωK , we can write (7.185) in the form

Iω̇
∗ = ZṀR2

A(ωm−ω
∗). (7.186)

Here the dimensionless coefficient Z is

Z = K1

(
uc

u f f

)
1

f (u)
. (7.187)

Taking into account that the matter falling onto the neutron star brings the angular
momentum zṀR2

Aω∗, we ultimately get

Iω̇
∗ = ZṀR2

A(ωm−ω
∗)+ zṀR2

Aω
∗ . (7.188)

Here 0 < z < 1 is a numerical coefficient which is ∼ 2/3 if the matter enters across
the magnetospheric surface with equal probability at different magnetospheric lati-
tudes. Substituting ωm(RA) = ωB(RB/RA)

2 for an iso-angular-momentum shell, we
can rewrite the above equation in the form
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Iω̇
∗ = ZṀωBR2

B−Z(1− z/Z)ṀR2
Aω
∗ . (7.189)

Substituting for the coupling coefficient Z, in the case of Compton cooling we
can rewrite (7.188) in a form explicitly showing the spin-up (Ksu) and spin-down
(Ksd) torques:

ω̇
∗ = AṀ

7
11 −BṀ3/11 = Ksu−Ksd . (7.190)

Here the spin-up/spin-down coefficients A and B do not explicitly depend on Ṁ.
For a characteristic value of the accretion rate Ṁ16 ≡ Ṁ/1016 g/s, the spin-up and

spin-down torques read (in CGS units):

Ksu ≈ 5.29×10−13[
rad
s

2
]K1

(
uc

u f f

)
ζ
− 7

11 µ
1
11

30

(
v8√

δ

)−4( Pb

10d

)−1

Ṁ7/11
16 I−1

45

(7.191)

Ksd ≈ 5.36×10−12[
rad
s

2
](1− z

Z
)K1

(
uc

u f f

)
ζ
−3/11

µ
13/11
30

(
P∗

100s

)−1

Ṁ3/11
16 I−1

45 .

(7.192)
Here I45 = I/1045 g cm2 is the NS moment of inertia, and the dimensionless factor
δ . 1 takes into account the actual location of the gravitational capture radius.

Another approach to the problem of interaction of a quasi-spherically accreting
magnetized plasma with rotating NS magnetospheres is presented in Ikhsanov et al
(2014).

7.12 Equilibrium Pulsars

For equilibrium pulsars we set ω̇∗ = 0 and from (7.188) we get

Zeq(ωm−ω
∗)+ zω

∗ = 0 . (7.193)

Close to equilibrium we may vary (7.188) with respect to Ṁ. Variations in δṀ may
in general be caused by changes in the density δρ as well as in the velocity of the
stellar wind δv (and thus the Bondi radius). For density variations only we find (see
Eq. (67) in Shakura et al (2013b) for more detail)

Zeq,ρ =
I ∂ω̇∗

∂Ṁ |eq
4
11 ω∗R2

A
≈ 2.52

(
∂ω̇∗
∂y |y=1

10−12

)(
P∗

100s

)
ζ
−4/11Ṁ−7/11

16 µ
−12/11
30 . (7.194)

On the other hand, by equating this value to the definition of the coupling coefficient
Z (see (7.187) above), we can find the dimensionless combination of the theory
parameters:

Π0 ≡
K1

(
uc

u f f

)
ζ 3/11 ≈ 0.55

(
∂ω̇∗
∂y |y=1

10−12

)(
P∗

100s

)
Ṁ−3/11

16 µ
−13/11
30 . (7.195)
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y=1 y=1

Fig. 7.4 Torque-luminosity correlation in GX
301-2, ω̇∗ as a function of BATSE data (20-
40 keV pulsed flux) near the equilibrium fre-
quency (Doroshenko et al 2010). The assumed
X-ray flux at equilibrium (in terms of the di-
mensionless parameter y) is shown by the ver-
tical dotted line.

Fig. 7.5 The same as in Fig. 7.4 for Vela X-1
(V.Doroshenko, PhD Thesis, 2010, IAAT)

The equilibrium period of an X-ray pulsar with known NS magnetic field can be
found from (7.189) (or, which is the same, by equating the spin-up and spin-down
torques from (7.191) and (7.192)):

Peq ≈ 1000[s](1− z/Zeq)ζ
4/11

µ
12/11
30,eq

(
Pb

10d

)
Ṁ−4/11

16

(
v8√

δ

)4

. (7.196)

In equilibrium, from this formula we may determine another dimensionless combi-
nation of the theory parameters:

Π1 ≡

(
1− z

Zeq

)
ζ 4/11

δ 2 ≈ 0.1
(

P∗

100s

)(
Pb

10d

)−1

Ṁ4/11
16 µ

−12/11
30 v−4

8 . (7.197)

Because of the strong dependence of the equilibrium period on the (usually,
poorly measurable) wind velocity, for pulsars with independently known magnetic
fields µ , it is more convenient to estimate the wind velocity, assuming P∗ = P∗eq:

v8 ≈ 0.56


(

1− z
Zeq

)
ζ 4/11

δ 2

−1/4

Ṁ1/11
16 µ

−3/11
30,eq

(
P∗/100s
Pb/10d

)1/4

, (7.198)

which is only weakly dependent on Ṁ and the theory parameter Π1.
In the possible case of mass accretion rate variations due to wind velocity changes

only, the coupling coefficient Zeq,v reads (see Eq. (68) in Shakura et al (2013b)):
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Zeq,v ≈ 0.76

(
∂ω̇∗
∂y |y=1

10−12

)(
P∗

100s

)
ζ
−4/11Ṁ−7/11

16 µ
−12/11
30 +

7
10

z . (7.199)

Clearly, in this case the coupling is weaker. Below we will consider only the wind
density variations. In principle, if z > 0 and (ωm−ω∗) > 0, (7.193) implies that
there can be no equilibrium at all – the pulsar can only spin-up. However, two well-
measured equilibrium pulsars (see below) show that an equilibrium does exist, sug-
gesting that in these objects (ωm−ω∗)< 0.

To illustrate the theory outlined above, we show the measured and obtained
model parameters of two well-known persistent X-ray pulsars, Vela X-1 and GX
301-2 (see Table 7.1).

Table 7.1 Parameters for the equilibrium X-ray pulsars.

Pulsar Equilibrium pulsars
GX301−2 VelaX−1

Measured parameters
P∗(s) 680 283
PB(d) 41.5 8.96
vw(km/s) 300? 700
µ30 2.7 1.2
Ṁ16 3 3
∂ω̇

∂y |y=1(rad/s2) 1.5 ·10−12 1.2 ·10−12

Derived parameters
f (u)ζ−7/11 0.32 0.30
Zeqζ 4/11 4.32 3.49
Π0 1.28 1.11
v8Π

1/4
1 (km/s) 530 800

It is clear from Table 7.1 that for Vela X-1 the observed and derived parameters
are in good agreement, with the value of the dimensionless theory parameter Π0∼ 1,
as expected from very general hydrodynamic similarity principles Sedov (1959). It
is remarkable that the parameter Π0 ∼ 1 in GX 301-2 as well, suggesting a common
physics of hydrodynamic interactions in these objects. However, the observed wind
velocity in GX 301-2 is inferred from observations to be around 300 km/s, which is
almost twice as low as that derived using our theory. To obtain such a low velocity
from (7.198), the dimensionless parameter Π1 should be around 10, which is unre-
alistically high (in fact, this parameter should not be higher than 1). From this we
conclude that in GX 301-2 the observed wind velocity is likely estimated far from
the region interacting with the NS.
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7.13 Non-equilibrium Pulsars

It is convenient to introduce the dimensionless parameter

y≡ Ṁ
Ṁeq

(7.200)

where Ṁeq represents the accretion rate at which ω̇∗ = 0:

Ṁeq =

(
B
A

)11/4

. (7.201)

Equation (7.190) can be rewritten in the form

Iω̇
∗ = AṀ

7
11
eq y

7
11

(
1− y−

4
11

)
. (7.202)

A plot of the function ω̇∗(y) is shown schematically in Fig. 7.6. The function ω̇∗(Ṁ)
reaches minimum at Ṁ = Ṁcr:

Ṁcr = Ṁeq

(
3
7

) 11
4
, (7.203)

In other words, ω̇∗ attains a minimum for the dimensionless parameter

ycr =

(
3
7

) 11
4
< 1. (7.204)

Table 7.2 Parameters of non-equilibrium X-ray pulsars

GX1+4 SXP1062 4U2206+54
Measured parameters
P∗(s) 140 1062 5560
PB(d) 1161 ∼ 300† 19(?)
vw(km/s) 200 ∼ 300‡ 350
µ30 ? ? 1.7
Ṁ16 1 0.6 0.2
ω̇∗sd −2.34 ·10−11 −1.63 ·10−11 −9.4 ·10−14

Derived parameters
K1(uc/u f f )ζ

−3/11(1− z/Z) 4.3
µ ′′30,min ≈ 2.4 ≈ 10 ≈ 0.6

† Estimate of the source’s position in the Corbet diagram ‡ Estimate of typical wind velocity for
Be X-ray binaries.
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y=M/M
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0

ycr

1
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GX301-2

GX 1+4

SXP1062

Fig. 7.6 Schematics of the dependence of ω̇∗ on the dimensionless accretion rate y. The figure
shows the position in the diagram for equilibrium pulsars with y ∼ 1 and for non-equilibrium
pulsars at steady spin-down with y < ycr

The minimum ω̇∗ for y = ycr (i.e. the maximum possible spin-down rate of the
pulsar) is

Iω̇
∗
min =−

4
3

AṀ
7
11
eq y

7
11 . (7.205)

Numerically, the maximum spin-down rate at ycr is

ω̇
∗
sd,min ≈−1.12×10−12[rad/s2](1− z/Z)7/4K1

(
uc

u f f

)
µ2

30

(
v8√

δ

)3(
P∗

100s

)−7/4( Pb
10d

)3/4
. (7.206)

Then, from the condition |ω̇∗sd | ≤ |ω̇∗sd,min| follows a lower limit on the neutron star
magnetic field:

µ30 > µ
′
30,min ≈ 0.94

∣∣∣ ω̇∗sd
10−12rad/s2

∣∣∣1/2
(1− z/Z)−7/8

[
K1

(
uc

u f f

)]−1/2

(
v8√

δ

)−3/2(
P∗

100s

)7/8( Pb
10d

)−3/8
. (7.207)

At very low accretion rates y� 1 the spin-up torque Ksu can be neglected, and
the spin-down rate of the pulsar is
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ω̇
∗
sd ≈−0.54×10−12[rad/s2](1− z

Z )K1

(
uc

u f f

)
ζ−3/11

µ
13/11
30 Ṁ3/11

16

(
P∗

100s

)−1
. (7.208)

From this we obtain a lower limit on the neutron star magnetic field that does not
depend on the stellar wind velocity or the binary orbital period:

µ30 > µ
′′
30,min ≈ 1.68

∣∣∣ ω̇∗sd
10−12rad/s2

∣∣∣11/13
(1− z

Z )
−11/13

[
K1

(
uc

u f f

)]−11/13
ζ 3/13

Ṁ−3/13
16

(
P∗

100s

)11/13
. (7.209)

As an example, consider the steady spin-down behavior in several slowly rotat-
ing moderate-luminosity X-ray pulsars (GX 1+4, SXP 1062, 4U 2206+54) within
the framework of the quasi-spherical settling accretion theory. The results are sum-
marized in Table 7.2.

7.14 On the Possibility of the Propeller Regime

The very slow rotation of the neutron stars in X-ray pulsars GX 1+4, GX 301-2
and Vela X-1 which we consider here as examples, ω∗(RA) < ωK(RA), means that
in these objects the propeller regime, in which the gas is ejected from the rotating
magnetosphere with a parabolic velocity and the neutron star spins down, can hardly
occur.

We start with estimating an important ratio of the viscous stresses (∼ BtBp) to
the gas pressure (∼ B2

p) at the magnetospheric boundary. This ratio is proportional
to the ratio of the magnetic field components, Bt/Bp (see equation (7.184)), and is
always less than one (in the moderate coupling regime). This implies that only large-
scale convective motions with turbulent radial scaling of eddies can be present in
the shell. When ω∗ > ωK(RA), a centrifugal barrier appears and accretion ceases. In
this case, the maximum possible braking torque applied to the neutron star will be of
the order of∼−K2µ2/R3

A because of the strong plasma-magnetosphere coupling. In
this regime, the toroidal magnetic field component, Bt , is comparable to the poloidal,
Bp. It can not be excluded that the hot shell with isomomentum angular rotation will
be conserved also in this case, and that the angular momentum removal from the
rotating magnetosphere will be mediated by this shell. If the characteristic cooling
time of the shell plasma is shorter than the gas free-fall time, the shell disappears
and, probably, a thin storage disc as considered in Syunyaev and Shakura (1977)
will be formed. No accretion occurs through such a disc, it only mediates the angular
momentum removal from the rotating magnetosphere.
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7.15 Do Slow X-ray Pulsars Have Prograde or Retrograde
Accretion Discs?

The analysis of real slow X-ray pulsars presented above suggests that they have
convective magnetospheric shells with isomomentum angular rotation. Therefore,
we will consider only the case with ω ∼ R−2. Equation (7.189) implies that for
ω̇∗ = 0 the equilibrium spin frequency of the neutron star is

ω
∗
eq = ωB

1
1− z/Z

(
RB

RA

)2

. (7.210)

We stress that such an equilibrium in our model is possible only if a settling accre-
tion shell is present above the magnetosphere. At high accretion rates Ṁ > Ṁ∗ '
4×1016 g s−1 accretion proceeds in the free-fall regime, and no hot shell is formed
above the magnetosphere.

The equilibrium period of an X-ray pulsar in the quasi-spherical settling accretion
regime is determined by formula (7.196):

Peq ' 1000[s]µ12/11
30 (Pb/10d)Ṁ−4/11

16 v4
8 . (7.211)

For comparison, in the case of standard disc accretion the equilibrium period is:

Peq,d ≈ 10[s]µ6/7
30 Ṁ−3/7

16 . (7.212)

Therefore, the long spin periods observed in some X-ray pulsars may be explained
in the presence of an accretion disc only by assuming a very strong (magnetar-
like) magnetic field of the neutron star. Another explanation based on retrograde
accretion discs (i.e. those with angular momentum opposite to the orbital) around
magnetospheres of such X-ray pulsars is also discussed in the literature. (see, for
example, Nelson et al (1997) and references therein). A conversion of the torques
due to the temporal formation of a retrograde accretion disc from the stellar wind
can, in principle, lead to very long spin periods even in X-ray pulsars with standard
magnetic fields. Such discs may be formed due to inhomogeneities in the captured
stellar wind Ruffert (1997, 1999). The observed torque reversal in some X-ray pul-
sars could be explained, in principle, by this mechanism. In the case of GX 1+4 with
long-term stable spin-down it is highly unlikely to observe a stable retrograde disc
on timescales much longer than the binary orbital period (see González-Galán et al
(2012) for more detail). For GX 301-2 and Vela X-1, the direct proportionality of
the torques to the X-ray luminosity (see Figs. 7.4 and 7.5) also does not support the
presence of a retrograde accretion disc.
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7.16 Conclusions

In Shakura et al (2012) we constructed a theoretical model of quasi-spherical
subsonic accretion onto slowly rotating magnetized neutron stars. In this model,
the accreting matter is gravitationally captured from the stellar wind of the optical
component and settles subsonically onto a rotating magnetosphere through a hot
extended quasi-static gas shell. In the shell, large-scale convective motions occur,
mediating the angular momentum transfer, and depending on the difference of the
velocity of the gas and the magnetosphere at the magnetospheric boundary, spin-up
or spin-down of the X-ray pulsar can be observed.

A detailed analysis and comparison with observations of the two slowly rotating
X-ray pulsars GX 301-2 and Vela X-1, which both demonstrate correlative changes
of the spin-up/spin-down torques with X-ray luminosity near the equilibrium period
of the neutron star, likely suggests strongly anisotropic convection in their mag-
netospheric shells leading to rotation with a constant specific angular momentum,
ω ∼ R−2. A statistical analysis of long-period X-ray pulsars in Be-binary systems
in the Small Magellanic Cloud (Chashkina and Popov 2012) also favors the rotation
law ω ∼ R−2. The accretion rate through the magnetospheric shell is determined by
the ability of the plasma to enter the magnetosphere. The settling accretion regime,
which enables angular momentum removal from the neutron star magnetosphere
may be realized at low accretion rates Ṁ < Ṁ† ' 4× 1016 g/c (X-ray luminosi-
ties L < L† ' 4×1036 erg s−1). At higher accretion rates (and, correspondingly, at
higher X-ray luminosities) rapid Compton cooling of the plasma above the magne-
tospheric boundary causes a free-fall gap to emerge above the magnetosphere, and
the accretion becomes highly non-stationary.

Spin-up/spin-down observations of long-period X-ray pulsars (i.e. measurements
of the torque ω̇∗, or ∂ω̇∗/∂Ṁ near the torque reversal point) allow the basic dimen-
sionless parameters of the model to be inferred as well as the neutron star mag-
netic field to be independently estimated. Such an analysis was carried out for the
equilibrium X-ray pulsars GX 301-2 and Vela X-1 and suggest magnetic fields in
agreement with estimations from cyclotron line measurements in these sources.

Measurements of the equilibrium pulsar period P∗, the orbital binary period Pb
and the neutron star magnetic field estimate µ make it possible to estimate the stel-
lar wind velocity v from the optical companion without using complicated spec-
troscopic measurements. For non-equilibrium pulsars, there is a maximum possible
value of the spin-down at the accretion stage depending on P∗, Pb, µ and v. For such
pulsars (e.g., GX 1+4, SXP 1062, 4U 2206+54) the observed spin-down rate and
X-ray luminosity can be used to obtain a lower limit on the neutron star magnetic
field, which in all cases is found to be close to the standard neutron star magnetic
field ∼ 1012 G and is in agreement with cyclotron line measurements.

In the model of subsonic quasi-spherical accretion, the observed long-term stable
periods of spin-up or spin-down of the neutron stars in some X-ray pulsars can be
quantitatively explained by a change of the mean accretion rate onto the neutron
star (with a corresponding change in X-ray luminosity). Apparently, such variations
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are related to the properties of the stellar wind from the optical companion in these
X-ray binaries.

The model predicts a specific behavior of the frequency variations δω̇∗ on top
of a steady spin-up or spin-down, as a function of the accretion rate variations δṀ.
There is a critical mass accretion rate, Ṁcr, below which an anti-correlation of the
frequency fluctuations δω̇∗ with δṀ should be observed. This is the case in GX 1+4
at the long-term steady spin-down stage presently observed. Above this accretion
rate, the frequency fluctuations δω̇∗ relative to the mean value should correlate with
the mass accretion rate fluctuations δṀ. This is the case in the equilibrium X-ray
pulsars Vela X-1 and GX 301-2 around the equilibrium period and in GX 1+4 at the
steady spin-up stage. The model also gives a quantitative explanation of the relative
amplitude and sign of the observed frequency fluctuations in GX 1+4.
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Chapter 8
On the Properties of Velikhov-Chandrasekhar
MRI in Ideal and Non-ideal Plasmas

Nikolay Shakura and Konstantin Postnov

Abstract In this chapter, conditions of the Velikhov-Chandrasekhar magneto-
rotational instability in ideal and non-ideal plasmas are examined. A linear WKB
analysis of hydromagnetic axially symmetric flows shows that in the Rayleigh-
unstable hydrodynamic case where the angular momentum decreases with radius,
the MRI branch becomes stable, and the magnetic field suppresses the Rayleigh
instability at small wavelengths. We investigate the limiting transition from hydro-
magnetic flows to hydrodynamic flows. The Rayleigh mode smoothly transits to the
hydrodynamic case, while the Velikhov-Chandrasekhar MRI mode completely dis-
appears without the magnetic field. The effects of viscosity and magnetic diffusivity
in the plasma on the MRI conditions in thin accretion discs are studied. We find the
limits on the mean free-path of ions allowing MRI to operate in such discs.

8.1 Introduction

In the end of the 1950s – beginning of the 1960s, E. Velikhov and S. Chan-
drasekhar studied the stability of sheared hydromagnetic flows (Velikhov 1959;
Chandrasekhar 1960). In these papers, the magneto-rotational instability (MRI) in
axisymmetric flows with magnetic fields was discovered. MRI arises when a rela-
tively small seed poloidal magnetic field is present in the fluid. This instability was
applied to astrophysical accretion discs in the influential paper by Balbus and Haw-
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ley 1991, and has since then been considered the major reason for the turbulence
arising in accretion discs (see Balbus and Hawley (1998) for a review). Non-linear
numerical simulations (e.g. Hawley et al 1995; Sorathia et al 2012; Hawley et al
2013) confirmed that MRI can sustain turbulence and dynamos in accretion discs.
However, semi-analytical and numerical simulations (see, for example, Masada and
Sano 2008; Stone 2011; Hawley et al 2013; Suzuki and Inutsuka 2014; Nauman and
Blackman 2015) suggest that the total (Reynolds + Maxwell) stresses due to MRI
are insufficient to cause effective angular momentum transfer in accretion discs, in
terms of the phenomenological alpha-parameter αSS (Shakura and Sunyaev 1973),
giving rather low values αSS ∼ 0.01−0.03. Note that from the observational point
of view, the alpha-parameter can be reliably evaluated, e.g. from analysis of non-
stationary accretion discs in X-ray novae (Suleimanov et al 2008), dwarf-nova and
AM CVn stars (Kotko and Lasota 2012), and turns out to be an order of magnitude
higher than typically found in the numerical MRI simulations.

In this chapter we use the local linear analysis of MRI in the WKB-approximation
by Balbus and Hawley (1991) to examine properties of MRI for different laws of
differential rotation in weakly magnetized flows, Ω 2(r)∝ r−n, i.e. when the solution
to the linearized MHD equations in the Boussinesq approximation is searched for
in the form ∼ ei(ωt−krr−kzz), where kr,kz are wave vectors in the radial and normal
direction to the disc plane, respectively, in cylindrical coordinates.

In this approximation, the dispersion relation represents a biquadratic algebraic
equation. A linear local analysis of unstable modes in this case was performed ear-
lier (see, e.g., Balbus (2012)). Here we emphasize the different behaviour of sta-
ble and unstable modes of this equation for different rotation laws of the fluid. We
show that in the Rayleigh-unstable hydrodynamic case, where the angular momen-
tum decreases with radius, the Velikhov-Chandrasekhar MRI does not arise, and the
magnetic field suppresses the Rayleigh instability at small wavelengths.

Then we turn to the analysis of a non-ideal plasma characterized by a non-zero
kinematic viscosity ν and magnetic diffusivity η . This problem has been addressed
previously by different authors (see, e.g. Balbus and Hawley (1998); Sano and
Miyama (1999); Ji et al (2001); Balbus (2004); Islam and Balbus (2005); Pessah and
Chan (2008), among others), aimed at studying various aspects of the MRI physics
and applications. To keep the paper self-contained, we re-derive the basic disper-
sion relation in the general case and investigate its behaviour for different values of
the magnetic Prandtl number Pm = ν/η and the kinematic viscosity ν . Specifically,
we consider the limitations implied by the viscosity in accretion discs with finite
thickness, and find phenomenologically interesting constraints on the disc param-
eters where MRI can operate. Below we delineate the derivation of the dispersion
equation for non-ideal plasma in the Boussinesq approximation for both adiabatic
and non-adiabatic perturbations for different magnetic Prandtl numbers, Pm = ν/η ,
and and different values of the kinematic viscosity ν . Then we consider limitations
on the viscosity in thin accretion discs in which MRI can operate.
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8.2 Derivation of the Dispersion Equation for a Non-ideal Plasma

Here we generalize the derivation of the MRI dispersion equation (8.36) given in
Kato et al (1998) to the case of a non-ideal plasma with arbitrary kinetic coefficients
ν and η (see also Ji et al (2001)).

The system of non-ideal MHD equations reads:
1) Mass conservation equation

∂ρ

∂ t
+∇ · (ρuuu) = 0 , (8.1)

2) Navier-Stokes equation including gravity force and Lorentz force

∂uuu
∂ t

+(uuu∇) ·uuu =− 1
ρ

∇p−∇φg +
1

4πρ
(∇×BBB)×BBB+ν∆uuu (8.2)

(here φg is the Newtonian gravitational potential),
3) Induction equation

∂BBB
∂ t

= ∇× (uuu×BBB)+η∆BBB , (8.3)

4) Energy equation

ρRT
µ

[
∂ s
∂ t

+(uuu∇) · s
]
= Qvisc−∇ ·FFF +

η

4π
[∇×BBB]2 . (8.4)

where s is the specific entropy (per particle), R is the universal gas constant, µ is
the molecular weight, T is the temperature, and terms on the right stand for viscous,
energy flux FFF and Joule dissipation, respectively.

5) These equations should be completed with the equation of state for a perfect
gas, which is convenient to write in the form:

p = Kes/cV ρ
γ , (8.5)

where K is a constant, cV is the specific volume heat capacity and γ = cp/cV is the
adiabatic index (5/3 for a monoatomic gas).

We will consider small axially symmetric perturbations in the WKB approxi-
mation with space-time dependence ei(ωt−krr−kzz), where r,z,φ are cylindrical coor-
dinates. The unperturbed magnetic field is assumed to be purely poloidal: BBB000 =
(0,0,B0). The velocity and magnetic field perturbations are uuu = (ur,uφ ,uz) and
bbb = (br,bφ ,bz), respectively. The density, pressure and entropy perturbations are
ρ1, p1, and s1 over the unperturbed values ρ0, p0, and s0, respectively. To filter out
magnetoacoustic oscillations arising from the restoring pressure force, we will use
the Boussinesq approximation, i.e. consider incompressible gas motion ∇ · uuu = 0.
In the energy equation we neglect Eulerian pressure variations, p1(t,r,φ ,z) = 0, but
Lagrangian pressure variations δ p(t,r(t0),φ(t0,z(t0)) are non-zero. (Recall that for
infinitesimally small shifts the perturbed gas parcel acquires the pressure equal to
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that of the ambient medium; see e.g. Spiegel and Veronis (1960); Kundu et al (2012)
for discussion of the Boussinesq approximation).

In the linear approximation, the system of differential non-ideal MHD equations
is reduced to the following system of algebraic equations.

a) The Boussinesq approximation for gas velocity uuu is ∇ ·uuu = 0:

krur + kzuz = 0 . (8.6)

b) The radial, azimuthal and vertical components of the Euler momentum equa-
tion are, respectively:

iωur−2Ωuφ = ikr
p1

ρ0
− ρ1

ρ2
0

∂ p0

∂ r
+ i

c2
A

B0
(krbz− kzbr)−νk2ur , (8.7)

iωuφ +
κ2

2Ω
ur =−i

c2
A

B0
kzbφ −νk2uφ , (8.8)

iωuz = ikz
p1

ρ0
− ρ1

ρ2
0

∂ p0

∂ z
−νk2uz (8.9)

Here k2 = k2
r +k2

z so that in the linear order ν∆uuu→−νk2{ur,uφ ,uz}1, and we have
introduced the unperturbed Alfvén velocity c2

A = B2
0/(4πρ0).

To specify the density perturbations ρ1/ρ0, we need to address the energy equa-
tion. First, we consider adiabatic perturbations, i.e. require that

∂ s
∂ t

+(uuu ·∇)s = 0 . (8.10)

For small density perturbations from Eq. (8.5) we obtain for entropy perturbations

s1

cV
+ γ

ρ1

ρ0
= 0 , (8.11)

and after substituting this into Eq. (8.10) we get

iωγ
ρ1

ρ0
+uz

∂ ln pρ−γ

∂ z
+ur

∂ ln pρ−γ

∂ r
= 0 (8.12)

(cf. Eq. (122) in Balbus & Hawley (1998)). Hence in the absence of entropy gradi-
ents we obtain

1
ρ0

∂ρ1

∂ t
= 0 . (8.13)

Consider now the more general case of non-adiabatic linear perturbations. To do
this, we need to specify the right-hand side of the energy equation (8.4). Let us start
with the last term. Writing for the magnetic field BBB = BBB000+bbb and taking into account
that for the unperturbed field ∇×BBB000 = 0, we see that the Joule dissipation term is

1 Here we neglect terms ∼ (kr/r) compared to terms ∼ k2, see also discussion in Acheson (1978).
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quadratic in magnetic field perturbations bbb, so we exclude it from consideration.
The heat flux divergence is

∇ ·FFF = ∇(−κT ∇T ) =−κT ∆T , (8.14)

where κT is the temperature conductivity coefficient. From the equation of state for
an ideal gas written in the form p = ρRT/µ , we find for small perturbations with
zero Eulerian pressure variations p1/p0 = 0

ρ1

ρ0
=−T1

T0
, (8.15)

i.e. in the axially symmetric waves considered here the density variations are in
counter-phase with the temperature variations.

The viscous dissipative function Qvisc can be written as Qvisc = ρνΦ , where the
function Φ in polar coordinates is

Φ = 2
[(

∂ur
∂ r

)2
+
(

1
r

(
∂uφ

∂φ

)
+ ur

r

)2
+
(

∂uz
∂ z

)2
]

+
[
r ∂

∂ r

( uφ

r

)
+ 1

r
∂ur
∂φ

]2
+
[

1
r

∂uz
∂φ

]2

+
[

∂ur
∂ z + ∂uz

∂ r

]2
− 2

3 (∇ ·uuu)2 .

(8.16)

All terms but one in this function are quadratic in small velocity perturbations; this
term has the form:

νρ

(
∂uφ

∂ r
− uφ

r

)2

. (8.17)

Writing for the azimuthal velocity uφ = uφ ,0 + uφ ,1 (here for the purposes of this
paragraph and only here we specially mark the unperturbed velocity with index 0,
not to be confused with our notations uφ for perturbed velocity in Eq. (8.7)-Eq. (8.8)
above and below). Thus we obtain for the viscous dissipation

Qvisc = νρr
dΩ

dr

[
r

dΩ

dr
−2ikruφ ,1−2

uφ ,1

r

]
+quadratic terms . (8.18)

Here Ω = uφ ,0/r is the angular (Keplerian) velocity of the unperturbed flow. The
first term in parentheses describes the viscous energy release in the unperturbed
Keplerian flow. For this unperturbed flow we have

∂ s0

∂ t
= νµ

[r(dΩ/dr)]2

RT
=

9
4

νµ
Ω 2

RT
. (8.19)

Thus, the entropy of the unperturbed flow changes along the radius. However, on a
scale of the order of or smaller than the disc thickness, the entropy gradient can be
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neglected. The second term in Eq. (8.18) vanishes if kr = 0, i.e. we consider two-
dimensional perturbations with only kz 6= 0. As a result, the energy equation with
zero entropy gradients in the Boussinesq limit becomes

ρ0RT0

µ
s1 =−2ikrνρ0r

dΩ

dr
uφ ,1−κT k2T0

T1

T0
. (8.20)

Like in the linearized equation ∇ ·uuu = 0, here we have neglected the term uφ ,1/r. By
substituting Eq. (8.11) and Eq. (8.15) into Eq. (8.20), we find the relation between
the density variations and uφ in the Boussinesq limit with zero entropy gradients:

ρ1

ρ0

(
iωcp +

κT k2

ρ0R/µ

)
=

2ikrνr(dΩ/dr)
RT0/µ

uφ (8.21)

Here cp = γcV = γ/(γ − 1) is the specific heat capacity (per particle) at constant
pressure.

To describe the effects of thermal conductivity, it is convenient to introduce the
usual dimensionless Prandtl number:

Pr≡ νρ0Cp

κT
. (8.22)

(Here Cp = cpR/µ). Substituting Eq. (8.22) into Eq. (8.21) yields:

ρ1

ρ0
=

γ/(γ−1)
(iω +νk2/Pr)

2ikrνr(dΩ/dr)
RT0/µ

uφ (8.23)

It is straightforward to include the density perturbations in the non-adiabatic case
(8.21) in the analysis. This significantly complicates the final dispersion equation
(see Eq. (8.32) below). We stress again that the two-dimensional case with kr = 0
produces the dispersion relation for small local perturbations which is exact even in
the case of non-adiabatic perturbations.

c) The three components of the induction equation with account for η∆BBB→
−ηk2{br,bφ ,bz} read:

iωbr =−iB0kzur−ηk2br , (8.24)

iωbφ =−iB0kzuφ + r
dΩ

dr
br−ηk2bφ , (8.25)

iωbz = iB0krur−ηk2bz . (8.26)

Following Kato et al (1998), we express all perturbed quantities through uz:

ur =−
kz

kr
uz , (8.27)

uφ =
kz

kr

κ2

2Ω
(iω +ηk2)2 + c2

Ak2
z r dΩ

dr[
(iω +νk2)(iω +ηk2)+ c2

Ak2
z
]
(iω +ηk2)

uz , (8.28)
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br

B0
(iω +ηk2) = i

k2
z

kr
uz , (8.29)

bφ

B0
(iω +ηk2) =−ikzuφ +

ir dΩ

dr
(iω +ηk2)

k2
z

kr
uz , (8.30)

bz

B0
(iω +ηk2) =−ikzuz , (8.31)

The system of linear equations (8.6) and (8.27) - (8.31) contains the equation
∇ · bbb = 0. Indeed, by multiplying Eq. (8.29) and Eq. (8.31) by kr and kz, respec-
tively, and summing up the obtained equations, we get krbr + kzbz = 0. Substituting
Eq. (8.27)-Eq. (8.31) into Eq. (8.7) and rearranging the terms, we arrive at the dis-
persion relation (8.48).

The dispersion relation in the general case of non-adiabatic perturbations with
kr 6= 0, i.e. with non-vanishing density perturbations ρ1 (see Eq. (8.21)) is:

ω
4
∗∗+

(
kz

k

)2 [(
iω +ηk2

)2
κ2 + c2

Ak2
z (κ

2−4Ω 2)
]

[
1− γ−1

γ

ikr
(iω+νk2/Pr)

(
A− kr

kz
B
)]

= 0 , (8.32)

where ω∗∗ is determined as

ω
2
∗∗ =−(iω +νk2)(iω +ηk2)− c2

Ak2
z . (8.33)

The coefficients A and B are:

A = ν

(
d lnΩ

d lnr

)(
1
p0

d p0

dr

)
; B = ν

(
d lnΩ

d lnr

)(
1
p0

d p0

dz

)
. (8.34)

Although the terms with A and B arising from the viscous dissipation function are
proportional to (kr/r)(ν/ω) and (k2

r/kzr)(ν/ω), they are retained in our analysis
since for large viscosities they may become comparable to or even higher than one.
The expression in the square brackets in Eq. (8.32) above can be rewritten in the
equivalent form:[

1+
γ−1

γ

iν
(iω +νk2/Pr)

(
kr

kz

)
d lnΩ/d lnr

RT0/µ
(kzgr,e f f − krgz)

]
, (8.35)

where gr,e f f = −1/ρ0(d p0/dr) and gz = −1/ρ0(d p0/dz) are the effective radial
and vertical gravity accelerations in the unperturbed flow, respectively. Clearly, for
kr = 0 we return to Eq. (8.48) with k = kz. Note that for kr 6= 0 Eq. (8.32) is a
fifth-order algebraic equation. For perturbations with kr = 0 this equation becomes
a fourth-order algebraic equation, which already has exponentially growing MRI
modes. For completeness, it would be desirable to investigate this five-order equa-
tion. However, in the absence of a magnetic field Eq. (8.32) turns into a third-order
algebraic equation. As we show in Shakura and Postnov (2015), one of the Rayleigh
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modes in this case can become exponentially unstable at long wavelengths even in
the Rayleigh-stable case of Keplerian rotation.

8.3 Linear Analysis for an Ideal Fluid

The dispersion relation for local small axially symmetric disturbances in the sim-
plest case of an ideal fluid without entropy gradients reads (see also Balbus and
Hawley (1991), Kato et al (1998)):

ω
4
∗ −
(

kz

k

)2

κ
2
ω

2
∗ −4Ω

2
(

kz

k

)2

k2
z c2

A = 0 . (8.36)

Here
ω

2
∗ = ω

2− c2
Ak2

z , (8.37)

k2 = k2
r + k2

z ,

κ
2 = 4Ω

2 + r
dΩ 2

dr
≡ 1

r3
dΩ 2r4

dr
(8.38)

is the epicyclic frequency, and

c2
A = B2

0/(4πρ0) (8.39)

is the unperturbed Alfvén velocity squared. The initial magnetic field B0 is assumed
to be purely poloidal (directed along the z-coordinate) and homogeneous.

The solution to the biquadratic equation (8.36) has the form:

ω
2 =

(
kz

k

)2
[

c2
Ak2 +

κ2

2
±
√

κ4

4
+4Ω 2c2

Ak2

]
. (8.40)

We will examine solutions to this equation by assuming k2
z/k2 ≡ k2

z/(k
2
r + k2

z ) =
const, i.e. the direction of the wave vector in the r− z plane is conserved, which
is not restricting our analysis. Depending on the sign of the root ω2, one of three
modes can exist: the stable oscillating mode for ω2 > 0, the indifferent equilibrium
(neutral) mode for ω2 = 0, or the exponentially growing mode for ω2 < 0.

According to the classical Rayleigh criterion (Lord Rayleigh 1916), if the epicyclic
frequency κ2 > 0 (in this case the angular momentum in the flow increases with ra-
dius), the equilibrium is stable. If κ2 < 0 (the angular momentum decreases with
radius), the equilibrium is unstable. If κ2 = 0 (the angular momentum does not
change with radius), the equilibrium is indifferent.
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8.3.1 The Ideal MHD Case

Let us start with discussing the behaviour of different modes of the dispersion
relation (8.36) in the ideal MHD case. It is instructive to investigate the asymptotics
of these modes with decreasing (but non-zero) seed magnetic field (see Section 8.3.2
for more detail on the limiting transition for a vanishing magnetic field).

If a magnetic field is present, there are five different types of solutions to
Eq. (8.40) depending on how the angular velocity (angular momentum) changes
with radius.

ω2�

 

k
2
�

k
2
�

kz�
2

κ2
�

0

κ2> 4Ω
2

n<0

ω2�
VC

ω2�
VC

ω2�
R ω2�

R

Fig. 8.1 Schematic behaviour of two branches of the dispersion equation Eq. (8.36) (the ‘Reynolds
mode’ ω2

R, thin curves, and the ‘MRI mode’ ω2
VC , thick curves) for two values of the Alfvén ve-

locity c2
A (two values of the seed magnetic field B0). The dashed straight lines show the asymptotic

behaviour of the solutions at large k2: ω2 = (kz/k)2c2
Ak2. The smaller the seed magnetic field, the

flatter the slope of the asymptotes. Case 1, where the angular velocity and angular momentum
increasing with radius (κ2 > 4Ω 2; n < 0).

Case 1: κ2 > 4Ω 2, n < 0. In this case there are two stable modes (see Fig. 8.1),
which at large k2 (in the short-wavelength limit) approach the asymptotic behaviour
ω2 = (kz/k)2c2

Ak2. With decreasing (but non-zero) seed magnetic field amplitude B0
(and corresponding unperturbed Alfvén velocity cA), one mode tends to the classical
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Fig. 8.2 The same as in Fig. 8.1 for the case of decreasing angular velocity with radius but increas-
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Fig. 8.3 The same as in Fig. 8.1 for the case of constant angular momentum (κ2 = 0; n = 4) (case
3). Both the Rayleigh and MRI branches have infinite derivatives dω2/dk2 at k2 = 0.
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Rayleigh branch ω2
R = (kz/k)2κ2 (the horizontal dashed line in Fig. 8.1), and the

second mode tends to the neutral branch ω2
VC→ 0.

Case 2: 0 < κ2 < 4Ω 2, 0 < n < 4. In this case the Rayleigh mode ω2
R behaves

almost in the same way as in case 1 (upper curves in Fig. 8.2). For the mode ω2
VC

(lower thick curves in Fig. 8.2) the instability arises in the interval: 0 < k2c2
A < nΩ 2.

It is in this case that the MRI instability occurs in a Keplerian accretion disc with
n = 3 and κ = Ω . With decreasing B0 the critical wave number separating the stable
and unstable behaviour

k2
cr(ω

2 = 0) = n
Ω 2

c2
A

(8.41)

tends to infinity. The maximum instability growth rate characterized by the mini-
mum of the mode ω2

VC occurs at

k2
max =

n(8−n)
16

Ω 2

c2
A
. (8.42)

By substituting Eq. (8.42) into Eq. (8.40), we find for the MRI mode

ω
2
VC,max =−

n2

16

(
kz

k

)2

Ω
2 =− n

8−n

(
kz

k

)2

c2
Ak2

max . (8.43)

With decreasing (but non-zero) B0 and c2
A, ω2

VC(k
2
max)→−0 as k2

max→ ∞.
Case 3: κ2 = 0, n = 4. In this case (see Fig. 8.3) both the Rayleigh mode ω2

R and
the MRI mode ω2

VC leave zero with infinite derivatives (positive and negative for the
Rayleigh and MRI modes, respectively). In the presence of a finite seed magnetic
field, the ω2

VC mode displays the MRI. As B0 becomes small (but non-zero), both
modes asymptotically approach the neutral mode ω2→ 0.

Case 4: κ2 < 0, 4 < n < 8. In this case (see Fig. 8.4) in the absence of a magnetic
field the instability according to the Rayleigh criterion emerges (the bottom dashed
horizontal line in Fig. 8.4) with ω2

R = κ2(kz/k)2. If a magnetic field is present, the
Rayleigh instability is stabilized by the magnetic field at k2 > k2

cr (bottom thin curves
in Fig. 8.4). Note that k2

cr and k2
max here are the same as in Case 2. While similar to

the MRI mode, this is now the Rayleigh mode ω2
R that is unstable and reaches a

maximum growth rate ω2
R,max determined by Eq. (8.43). In contrast, the Velikhov-

Chandrasekhar mode ω2
VC (upper thick curves in Fig. 8.4) remains stable at all

wavenumbers, and with decreasing (but non-zero) magnetic field ω2
VC → +0. We

stress again that the difference between the Rayleigh and MRI modes is due to their
different asymptotic behaviour as B0 → +0: the Rayleigh mode is unstable and
behaves as ωR→−κ2k2

z/k2, unlike the stable Velikhov-Chandrasekhar mode.
Case 5: κ2 < 0, n > 8. The only difference of this case from Case 4 is that the

Rayleigh mode ω2
R leaves zero with a positive derivative (bottom thin curves in Fig.

8.5).
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Fig. 8.4 The same as in Fig. 8.1 for the case of decreasing angular momentum (κ2 < 0; 4 < n < 8)
(Case 4). Instability according to the Rayleigh criterion occurs. The Rayleigh branch has a negative
derivative at k2 = 0.

8.3.2 On the Behaviour of MRI for a Vanishing Magnetic Field

The transition to the purely hydrodynamic case without magnetic field should
be treated separately. Let us consider asymptotic solutions (8.40) for a vanishing
magnetic field. In the leading order in cA the two branches of the dispersion relation
are:

ω
2
R '

(
kz

k

)2 [
κ

2 + c2
Ak2
(

1+
4Ω 2

κ2

)]
, (8.44)

which we have refered to as the Rayleigh mode since in the absence of a magnetic
field it tends to the classical Rayleigh mode ω2

R = (kz/k)2κ2, and

ω
2
VC ' kz

2c2
A

(
1− 4Ω 2

κ2

)
, (8.45)

which we have refered to as the Velikhov-Chandrasekhar mode and which is mani-
festly unstable for Keplerian motion (κ2 = Ω 2).
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Fig. 8.5 The same as in Fig. 8.4 for the case (κ2 < 0; n > 8) (case 5 in the text); the Rayleigh
branch has a positive derivative at k2 = 0.

Note that unlike for the Rayleigh mode, setting the magnetic field to zero in
Eq. (8.45) leads to a paradoxical result: ω2

VC = 0. This ‘neutral mode’ is fictitious,
it does not exist in the purely hydrodynamic case. To see this, let us write down the
linearized system of perfect fluid equations in the Boussinesq approximation (see
(8.6) – (8.9) and Eq. (8.13) in Section 8.2):

krur + kzuz = 0
iωur−2Ωuφ = ikr

p1
ρ0

iωuφ +
κ2

2Ω
ur = 0

iωuz = ikz
p1
ρ0

(8.46)

It is easy to find the dispersion relation in this case:

ω
2 =

(
kz

k

)2

κ
2 , (8.47)
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which is the classical Rayleigh branch. No neutral mode ω2 = 0 arises. The neu-
tral mode ω = 0 does exist in the purely hydrodynamic case but only for a specific
choice of radial perturbations with ur = uz = kz = 0 and −2Ωuφ = ikr(p1/ρ0) (see
(8.46)). The odd mode ω2 = 0 arising in the limiting transition to a vanishing mag-
netic field formally appears from Eq. (8.36) since the fourth order of this dispersion
relation is entirely due to the expression in square brackets ∼ ω2 in the denomina-
tor of Eq. (8.28), which for the case B = 0 is cancelled out by the expressions in
brackets ∼ ω2 in the numerator.

Similarly, no smooth transition to the hydrodynamic case occurs if viscosity is
included (see below). The absence of a smooth transition to the ideal hydrodynamic
case when B→ 0 was first noted by Velikhov (1959). At the same time, the transition
to the classical Rayleigh mode with vanishing magnetic field proceeds smoothly.

8.4 Linear Analysis for a Fluid with Viscosity and Magnetic
Diffusivity

Let us now consider the more general case of a non-ideal viscous fluid with finite
electric conductivity characterized by the kinematic viscosity coefficient ν and resis-
tivity (magnetic diffusivity) η . Naturally, in problems with viscosity and magnetic
diffusivity there is no initial steady state. The angular momentum is redistributed by
viscosity on the time scale τν ∼ R2/ν , and the magnetic field changes on the mag-
netic diffusion time scale τη ∼R2/η , where R is the characteristic size of the system.
Everywhere below we will assume these timescales to be extremely long compared
to the Keplerian rotation time and the characteristic instability growth time, if con-
ditions are suitable for the latter to arise. The dispersion relation in this case can
be derived following the local linear analysis of MRI performed, e.g. in the mono-
graph by Kato et al (1998), taking into account viscosity and conductivity in the
WKB-approximation (see Section 8.2, with zero density perturbations Eq. (8.13)):

ω
4
∗∗+

(
kz

k

)2 [(
iω +ηk2)2

κ
2 + c2

Ak2
z (κ

2−4Ω
2)
]
= 0 , (8.48)

where ω2
∗∗ is determined by Eq. (8.33).

The dispersion relation (8.48) is identical to the one derived for a rotating liquid
metal annulus in the incompressible limit (Ji et al 2001)2. This equation was also de-
rived and mathematically analysed in Pessah and Chan (2008). However, that paper
focused on the application of the MRI mode to the calculations of the Reynolds and
Maxwell stresses in the differentially rotating flow. In what follows we shall discuss
the constraints on MRI modes in astrophysical accretion discs, where the free-path
length of particles (and hence the viscosity) is limited by the disc thickness.

2 Note that those authors searched for a stable differential rotation law between cylinders with given
viscosity and electric conductivity while we are investigating conditions for MRI in a viscous,
electrically conducting flow in a gravitational field with given differential rotation law.
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The magnetic Prandtl number is introduced as Pm = ν/η . Using the standard
expressions for ν and η for fully ionized hydrogen plasma from Spitzer (1962), we
readily find

Pm ≈ 3.4×10−28 T 4

ρ lnΛeHΛpH
, (8.49)

where T is the temperature, ρ is the density and ΛeH and ΛpH are electron and
proton Coulomb logarithms, respectively.

As was shown by Balbus and Henri (2008), the magnetic Prandtl number can be
of the order of one in the inner parts of accretion discs around neutron stars and
black holes.

8.4.1 The Case of the Magnetic Prandtl Number Pm=1

Here we will discuss the exact analytic solution to Eq. (8.48) for the important
particular case Pm = 1 (which can be derived, for example, from the general analytic
solution found in Pessah and Chan (2008)) and obtain restrictions on the maximum
mean free-path length of ions in accretion discs at which MRI disappears due to
non-ideality effects.

The exact solution to Eq. (8.48) for Pm = 1 is

ω = iνk2±

√√√√(kz

k

)2
[

c2
Ak2 +

κ2

2
±
√

κ4

4
+4Ω 2c2

Ak2

]
. (8.50)

Here the plus sign before the second square root corresponds to the Rayleigh branch,
and the minus sign corresponds to the Velikhov-Chandrasekhar (MRI) branch. We
shall examine below the MRI branch only.

We note that the first square root in this equation contains the solutions (8.40) to
Eq. (8.36):

ω = i
(

νk2−
√
−ω2

ν=0

)
. (8.51)

(Recall that for regions with MRI ω2 < 0). Also note that like in the ideal MHD case
considered above in Section 8.3.2, here there is no smooth transition from the MRI
mode to the hydrodynamic case with viscosity with a vanishing magnetic field. As
can be straightforwardly derived from Eq. (8.6)- (8.9) in Section 8.2, the dispersion
relation for the hydrodynamic case with viscosity reads:

(iω +νk2)2 +

(
kz

k

)2

κ
2 = 0 . (8.52)

While the Rayleigh mode (with a positive sign before the second square root in
Eq. (8.50)) tends to the mode given by Eq. (8.52) when magnetic field is vanishing,
the MRI mode (with a negative sign before the second square root in Eq. (8.50))
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completely disappears (there is no mode iω+νk2 = 0 without magnetic field, unless
kz = 0).

Below we will consider the case kz = k, i.e. with kr = 0. For further analysis it is
convenient to rewrite the dispersion relation (8.48) in the dimensionless form. We
introduce the dimensionless variables:

ω̃ ≡ ω/Ω ; k̃ ≡ cAk
Ω

; κ̃
2 ≡ κ

2/Ω
2; ν̃ ≡ νΩ

c2
A
. (8.53)

For Keplerian discs the dimensionless epicyclic frequency is κ̃2 = 1. In dimension-
less variables, the solution to Eq. (8.48) takes the form:

ω̃ = i

ν̃ k̃2±

√
−k̃2− 1

2
∓
√

1
4
+4k̃2

 . (8.54)

Of the four solutions to Eq. (8.54) we choose the one for the MRI mode:

ω̃ = i

ν̃ k̃2−

√
−k̃2− 1

2
+

√
1
4
+4k̃2

 . (8.55)

Now we find the neutral point ω̃ = 0. Squaring Eq. (8.55) twice, we obtain the
equation for the critical wavenumber k̃cr separating unstable (k̃ < k̃cr) and stable
(k̃ > k̃cr) perturbations:

ν̃
4k̃6 +2ν̃

2k̃4 +(1+ ν̃
2)k̃2−3 = 0 . (8.56)

Without viscosity we recover the old result: k̃2
cr = 3 (see Eq. (8.41)). It is easy

to check that for the dimensionless viscosity ν̃ = 4/5 the neutral point is k̃cr =√
15/16, i.e. here the neutral point coincides with the maximum wavenumber kmax

at which maximum MRI growth occurs in the inviscid case (see Eq. (8.42) above).
For a large dimensionless viscosity ν̃ � 1, the asymptotic solution to Eq. (8.55)
reads

k̃cr '
√

3
ν̃

. (8.57)

Therefore, at arbitrarily high viscosity there exists an interval of wavenumbers 0 <
k̃ < k̃cr where MRI is still at work, but the MRI increment here is very small.

Actually, in realistic models of accretion discs with finite thickness H we should
take into account that there is a lower limit for k corresponding to the obvious re-
striction on the maximum perturbation wavelength λ < 2H:

k =
2π

λ
>

π

H
≡ kmin . (8.58)

Therefore, in dimensionless variables we obtain the MRI condition in the form:
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Fig. 8.6 Schematics of the influence of viscosity on the MRI condition 0 < k̃ < k̃cr . Shown are
curves of the imaginary part of ω̃ as a function of the dimensionless wave number k̃2. With in-
creasing viscosity, the MRI interval shifts to the left and shrinks (see also Fig. 1 in Pessah & Chen
(2008)).

k̃min ≤ k̃ ≤ k̃cr . (8.59)

It is also convenient to change from the disc thickness H to the characteristic thermal
velocity in the disc cs, since in accretion discs the hydrostatic equilibrium along the
vertical coordinate yields

cs = ΠΩH (8.60)

where Π is a numerical coefficient. For example, in the standard geometrically
thin Shakura-Sunyaev α-disc Π = 1/

√
4Π1 ' 1/

√
20 (see Ketsaris and Shakura

(1998)). Thus, in an inviscid fluid k̃cr =
√

3, k̃min = πΠ(cA/cs), and the MRI con-
dition Eq. (8.59) takes the form

πΠ

(
cA

cs

)
≤
√

3 . (8.61)

Essentially, this is the well-known condition that for MRI to operate the seed mag-
netic field should not exceed some critical value.

In a non-ideal plasma the MRI condition Eq. (8.61) becomes

πΠ

(
cA

cs

)
≤ k̃cr . (8.62)
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Fig. 8.7 The dimensionless critical wavenumber k̃cr as a function of the dimensionless viscosity
coefficient ν̃ for different magnetic Prandtl numbers Pm. Lines from bottom to top correspond to
Pm=0.01, 0.1, 0.3, 3, 10, 30, 100, 300.

Note that k̃cr decreases with ν̃ . For example, if ν̃ is high, Eq. (8.57) implies very
small values of k̃cr and, correspondingly, very low cA giving rise to MRI with unin-
terestingly small increments. The schematic behaviour of the MRI mode at non-zero
viscosity is shown in Fig. 8.6. For an arbitrary finite viscosity ν̃ the neutral point
ω̃(k̃cr) separates exponentially growing small perturbations ∝ exp(iωt) (the lower
part of Fig. 8.6 where Imω̃ > 0) from exponentially decaying ones (the upper part of
Fig. 8.6). At zero viscosity, however, the function ω̃(k̃) (the curve labeled by ν̃ = 0)
ends at the point k̃cr =

√
3, since in this case at k̃ ≥ kcr, ω̃ becomes purely real and

small perturbations start to oscillate.
In the case of high viscosity it is convenient to express the ratio cA/cs through

the dimensionless viscosity ν̃ . Using the conventional definition of the viscosity
coefficient ν = csl, where l is the effective mean-free path of ions with account
for the Coulomb logarithm, and our convention for the thermal velocity in the disc
(8.60) introduced above, we find:

ν̃ ≡ ν
Ω

c2
A
=

1
Π

(
cs

cA

)2( l
H

)
. (8.63)

Finally, we obtain the MRI condition in the convenient form:

l
H
≤ 1

π2Π
ν̃ k̃2

cr . (8.64)
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In the particular case Pm=1 we may explicitly find ν̃ k̃2
cr from Eq. (8.55):

ν̃ k̃2
cr =

√
−k̃2

cr−
1
2
+

√
1
4
+4k̃2

cr , (8.65)

so that condition (8.64) takes the form:

l
H
≤ 1

π2Π

√
−k̃2

cr−
1
2
+

√
1
4
+4k̃2

cr . (8.66)

(This formula should be used when ν 6= 0, i.e. when k̃2
cr < 3). Consider first the case

of low viscosities where k̃2
cr ≈ 3. By introducing the small parameter ε = 3− k̃2

cr� 1
and expanding the left-hand side of Eq. (8.66) in ε , we obtain

l
H
≤ 1

π2Π

√
41
49

ε . (8.67)

Now consider the special case where k̃cr coincides with the wavenumber of max-

imum MRI increment in the ideal fluid: k̃cr = k̃max =
√

15
16 (see Eq. (8.42)). This is

realized at ν̃ = 4/5. Here we find the limit(
l
H

)
≤ 1

π2Π
0.75≈ 0.34. (8.68)

Finally, in the high-viscosity limit for Pm=1 ν̃ � 1, substituting the asymptotic
(8.57) into Eq. (8.64) making use of the expression for dimensionless viscosity
(8.63) we obtain (

l
H

)
≤
√

3
π

(
cA

cs

)
, Pm = 1, ν̃ � 1 . (8.69)

Note that this constraint is insensitive to the disc vertical structure parameter Π . This
condition can be checked for particular microphysics plasma properties in different
thin Keplerian discs.

8.4.2 The Case of an Arbitrary Magnetic Prandtl Number

The generalization of the above analysis to an arbitrary Prandtl number is
straightforward. First, for given Pm and ν̃ we solve the dimensionless Eq. (8.48)
to find k̃cr(ν̃ ,Pm). at the neutral point where ω̃(k̃cr) = 0.

To do this, it is convenient, for the sake of brevity, to introduce the new dimen-
sionless variables

y≡ k̃2, X = iω̃ + ν̃y (8.70)

and rewrite dimensionless dispersion relation (8.48) in the equivalent form:
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X4 +2 1−Pm
Pm

ν̃yX3 +

[(
1−Pm

Pm

)2
ν̃2y2 +2y+1

]
X2 +[

1−Pm
Pm

ν̃y(y+1)
]

X +
(

1−Pm
Pm

)2
ν̃2y2 + y2−3y = 0 . (8.71)

(Here we assumed Keplerian discs with κ̃ = 1 and used the condition kz/k = 1).
Noticing that at the neutral point determined by the condition ω̃(ycr) = 0 we have
X = ν̃ycr, we arrive at the equation for ycr:

ycr
[
ν̃

4y3
cr + ν̃

2ycr(2ycrPm +1)+Pm
2(ycr−3)

]
= 0 . (8.72)

At Pm = 1 this equation, of course, coincides with Eq. (8.56). The non-trivial real
solution to the cubic equation in the square brackets of Eq. (8.72) reads:

ycr ≡ k̃2
cr = A − 2Pm

3ν̃2 −
1
A

(
1

3ν̃2 −
Pm

2

9ν̃4

)
, (8.73)

where

A =

[(
1

27ν̃6 +
2Pm

2

27ν̃8 + Pm
3

ν̃8 + 9Pm
4

4ν̃8 + Pm
4

27ν̃10 +
Pm

5

9ν̃10

)1/2
+

Pm
3ν̃4 +

3Pm
2

2ν̃4 + Pm
3

27ν̃6

]1/3
. (8.74)

At high dimensionless viscosities there is an asymptotic to the solution (8.73) for
Pm/ν̃2� 1:

ycr = k̃2
cr ≈

3Pm
2/ν̃2

1+Pm
2/ν̃2

=
3Pm

2

ν̃2 +O

(
Pm

2

ν̃2

)2

. (8.75)

Note that this asymptotic may also be found in Pessah and Chan (2008) (their Eq.
(97)) and for small Pm can be derived for Keplerian rotation and k = kz from Eq. (3)
in Ji et al (2001).

Thus, the general MRI condition for arbitrary non-ideal plasma (8.62) takes the
form: (

cA

cs

)
≤ 1

πΠ
k̃cr(ν̃ ,Pm) . (8.76)

The result of a calculation of k̃cr for a range of magnetic Prandtl numbers Pm and
dimensionless viscosities ν̃ can be found in Pessah and Chan (2008) (see e.g. their
Fig. 6 and 7) and is illustrated in Fig. 8.7.

In the limiting case of high dimensionless viscosities Pm/ν̃2� 1, which may be
realized in the outer parts of thin Keplerian accretion discs (see Eq. (8.49) above),
using asymptotic (8.75) and definition (8.63), we find the restriction on the mean-
free path of ions in the disc(

l
H

)
≤
√

3Pm

π

(
cA

cs

)
, Pm/ν̃

2� 1 . (8.77)



8 On the Properties of Velikhov-Chandrasekhar MRI in Ideal and Non-ideal Plasmas 403

which is the generalization of Eq. (8.69) to an arbitrary magnetic Prandtl number.
Using the expression for the dimensionless viscosity (8.63), the condition for the
power-law asymptotic Pm/ν̃2� 1 can be recast to the inequality

Pm/ν̃
2� 1 ⇔

(
l
H

)2

�ΠPm

(
cA

cs

)4

. (8.78)

Therefore, the MRI condition can be written in terms of the interval for l/H in a
Keplerian disc as

√
ΠPm

(
cA

cs

)2

�
(

l
H

)
≤
√

3Pm

π

(
cA

cs

)
. (8.79)

8.5 Conclusions

In this chapter we have extended the original analysis of MRI in ideal MHD
plasmas carried out by Balbus (2012). First, we emphasize that hydromagnetic flows
in which the angular momentum increases or decreases with radius are different
from the point of view of MRI development. In the classical Rayleigh-unstable case
where the angular momentum decreases with radius, the Velikhov-Chandrasekhar
MRI mode is stable, while the Rayleigh mode is unstable (see Fig 4, 5); the magnetic
field stabilizes the Rayleigh mode in the short-wavelength limit. When the angular
momentum in the flow increases with radius, MRI arises at long wavelengths (small
wave numbers k, see Fig. 8.2). However, the local WKB approximation should be
applied with caution at long wavelengths. At long wavelengths, the ansatz for the
solution should rather be used in the global form f (r)ei(ωt−krr−kzz). Note that in the
original papers by Velikhov and Chandrasekhar, they analyzed the linear stability
of magnetized flows between cylinders exactly in that approximation (see also Sano
and Miyama (1999) for a global analysis of perturbations in an inviscid magnetized
proto-planetary disc with non-zero magnetic diffusivity).

Further, in the phenomenologically interesting case of thin Keplerian accretion
discs, viscosity may restrict MRI growth. This situation may arise in the inner parts
of an accretion disc. Indeed, at high temperatures the mean free path of ions l ∼
T 2 can become comparable to the characteristic disc thickness H at H < r (thin
discs). This means that the flow should be treated kinetically (see, for example,
recent 2.5D hybrid calculations Shirakawa and Hoshino (2014) or the discussion of
MRI in rarefied astrophysical plasmas with Braginskii viscosity in Islam and Balbus
(2005)). The weak seed magnetic field does not grow under these conditions, i.e. the
high ion viscosity can suppress MRI. Clearly, this interesting regime requires further
study.

At large magnetic Prandtl numbers Pm� 1, which may be present in the inner-
most parts of accretion discs around neutron stars and black holes, the kinematic vis-
cosity ν is much larger than the magnetic diffusivity η . In this case the plasma may
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become collisionless, and the hydrodynamic description fails. Our analysis shows
that, in principle, a collisionless regime (where the ion mean-free path is compara-
ble to or larger than the disc thickness, l ∼H) may be established in Keplerian discs
even for magnetic Prandtl numbers Pm ' 1 (see Eq. (8.79)).

We have also obtained the dispersion relation for local small perturbations in the
Boussinesq limit for non-adiabatic perturbations (see Eq. (8.32)). This is a fifth-
order algebraic equation, in contrast to the fourth-order dispersion relation for adia-
batic perturbations or non-adiabatic perturbations with kr = 0 in a non-ideal plasma
(8.48). Also note that when the density perturbations are expressed through the en-
tropy gradients (see Eq. (2.2h) in Balbus and Hawley (1991)), the frequency ap-
pears in the denominator but the final dispersion relation (2.5) in Balbus and Hawley
(1991) remains a the fourth-order equation in ω , even when taking the entropy gra-
dients into account. Apparently, the difference is due to the fact that in the case of
non-adiabatic perturbations the density variations are proportional to the azimuthal
velocity perturbations uφ (see our Eq. (8.21)) and not to uz and ur as in the case con-
sidered by Balbus and Hawley (1991). The analysis of the effect of non-adiabatic
perturbations deserves a separate study and will be addressed in a future work.

Perturbations with kr = 0 represent waves propagating along the z-coordinates,
and when their wavelength is comparable to the disc thickness, the WKB approx-
imation becomes problematic. Perturbations with kz = 0 propagate along the r-
coordinate, which is much larger than the disc thickness for thin accretion discs.
However, for such perturbations with k = kr and kz = 0, the second term in Eq. (8.48)
and Eq. (8.32) vanishes, and therefore from Eq. (8.33) we find two perturbation
modes

ω1 = iνk2 , ω2 = iηk2 , (8.80)

i.e. decaying standing waves for any seed magnetic field. This may suggest that in
poloidal magnetic fields purely radial perturbations with k = kr do not grow. The sit-
uation is different when an azimuthal magnetic field is present. This case should be
considered separately and has been investigated for a range of astrophysical applica-
tions in other works (see, e.g., Acheson (1978); Sano and Miyama (1999); Ruediger
et al (2014); Kirillov et al (2014)).

We conclude that in thin Keplerian accretion discs the addition of viscosity may
strongly restrict the MRI conditions once the mean free path of ions becomes com-
parable to the disc thickness. This limitation should be taken into account in the
direct numerical simulations of MRI in astrophysical accretion discs.
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