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ABSTRACT

Accretion disks around magnetized neutron stars reveal themselves in observed X-ray sources. We consider effects of the
magnetic field of a central star on a steady accretion disk assuming that magnetic field of a central star can penetrate the disk.
We construct an analytical model of disk-magnetic field interaction and calculate how the structure of the accretion disk depends
on the magnetic field. To calculate the induced magnetic field, induction equation is examined and some analytical solutions
were found. Motion equations are modified taking the magnetic field into account. The inner radius of the accretion disc and
the viscous stress tensor follows from the found distribution of the magnetic torque. For low accretion rate, the inner radius can
be very different from the Alfven one. A modified system of equations for the vertical structure is solved self-consistently with
the induction equation to find radial and vertical distributions of parameters in the disk. In addition, we calculate the spectra of
the disk thermal emission. We show that normalized relative vertical structure is basically the same for any set of parameters.

Nevertheless, the magnetic field can sufficiently modify the viscous tensor, radial structure, and spectra of the disk.
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1 INTRODUCTION

Despite a lot of works concerning a behaviour of an accretion disk
around magnetized star, there is still a lack of understanding of how
the structure of an accretion disk changes in a presence of a strong
magnetic field. In the present paper we assume a neutron star (NS)
as the central star, since we are interested mostly in the behaviour of
the disk during the X-ray outbursts. Nevertheless, the results of this
paper can be also applied to the cases of accretion onto the white
dwarfs, T-Tauri stars or onto any magnetic and spinning object.

We consider a situation when the magnetic field managed to pen-
etrate the disk. Due to ionized state of the disk the magnetic lines
tend to be engaged by the rotating matter, and induced components
of the field appear (a dynamo mechanism).

One of the first attempts to build a self-consistent model of ac-
cretion disk interacting with magnetic field was the series of works
Ghoshetal. (1977) Ghosh & Lamb (1979a), Ghosh & Lamb (1979b).
Radial distribution of parameters were found, but the induced mag-
netic field was set up artificially. Later Wang (1987) showed that the
pressure of such induced magnetic field would destroy the disk far
from the central star. Another important effect that was not consid-
ered by Gosh and Lamb was reconnection of the magnetic field lines:
the lines can reconnect in the region : where Keplerian velocity in the
disk differs much from the magnetosphere velocity (Lovelace et al.
1995). This process limits the growth of induced magnetic field due
to dynamo mechanism.

Campbell & Heptinstall (1998a) and Campbell & Heptinstall
(1998b) have built a model for the magnetized accretion disk adopt-
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ing turbulent diffusivity (buoyancy diffusivity) as a mechanism of
magnetic field dissipation. They obtained pretty much the same re-
sults in both papers, which is a hint that the exact mechanism of field
growth limitation is not important. Campbell (2010) investigated the
mechanism of disk disruption near the central star by the magnetic
field pressure. This effect is present due to different dependencies of
gas pressure and magnetic pressure on the distance to the NS.

The paper is organized as follows. In section 2 we give an overview
of the accretion disk model we use. In section 3 we discuss previous
models of induced magnetic field and construct our own model. Then
we examine closely the equation of angular momentum transport in
section4. The position of the inner radius and the viscous stress tensor
are found there. In section 5 we briefly discuss how the presence of
a magnetic field affects the blackbody multicolor spectra of the disk.
In section 6 we build a model for the vertical structure of the disk,
and in the next section 7 the radial structure of the disk is found by
solving the system of vertical structure equations at each radius. We
discuss our results in section 8.

2 MODEL OF THE DISK

We will use cylindrical coordinates (r, ¢, z) everywhere in this work.

We adopt the model of a neutron star with the rotation axis aligned
with the accretion disk axis. We assume the magnetic field of the NS
to be dipole (the dipole moment of the NS s, ~ 1020 —1027G-cm?).
The inclination angle y between the magnetic moment fi,, and the
angular velocity of the NS Qg may be between 0° and 90°.

Our model of an accretion disk and its interaction with the mag-
netic field is based on a work KluzZniak & Rappaport (2007) (here-
after KR0O7). Our accretion disk is geometrically thin and optically
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thick (relative semi-thickness of the disk zo(r)/r = h(r) < 1)
and a-prescription for the model of turbulence is adopted. The a-
parameter is a free parameter of the model and it is not calculated
self-consistently with the magnetic field. The matter is assumed to
have a Keplerian angular velocity inside the disk and stellar angular
velocity outside the disk.

Following KRO7, we assumed that there is an inner radius of
viscous accretion disk r( on which viscous tensor Wy, is zero. There
are no viscous torques in the transition region Rmax < r < rg and the
motion of matter is controlled only by electromagnetic forces. Here
Rmax 1s a maximum of the radius of a neutron star R and a radius of
the innermost stable circular orbit Risco: Rmax = max(Rs, Risco)-
If we know the magnetic field inside and outside the accretion disk,
these assumptions are enough to find the position of an inner radius
ro and viscous stress tensor Wy .

As in KRO7, we did not take a Joule heat into consideration and
account only for the heat by viscous process since it is not clear which
part of Joule heat is released outside the disk.

2.1 Notation

We will use the following notations. Corotation radius is the distance
where the Keplerian angular velosity is equal to the stellar one:

1/3
re = (GMS) , 1
Q2

with Qg being the angular velocity oa the NS.
The “light cylinder” radius:

C
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We also introduce a = r;/ro = 4.86 fo00M] 4. The characteristic
magnetosphere radius which will be referred as an “Alfven radius”:
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Here M is an accretion rate, My is a NS mass, MUm 1S a magnetic
dipole moment of the NS.

The fastness parameter w is defined as the ratio of a NS angular
velocity Q to the Keplerian angular velocity at the distance r :
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Following KRO07, let’s define the parameter ¢ as:
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This is an estimation of &-parameter:
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with the parameters normalized to theirs characteristic values: pg =
wm /(1020 G-cm®), M7 = M /(107 g/s), My 4 = M/1.4Mo, fisa
frequency of the NS: f>09 = f/(200 Hz). If not specified, M| 4 = 1,
f200 = 1 everywhere in this work .
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2.2 Main equations

Now we will write down the equations of motion which will be used
throughout the paper. The Navier-Stokes equations with the magnetic
field included:

v

I B2 1o = 1 -
+ (V)i ===V [P+ — |+ —(BV)B- Vb +N. (7
ot p 4dnp P

87| " 4np
Here @, is gravitational potential of the NS (we neglect the self-
gravity of the disk):

GM;
Oy = ——— ®)

ViZ+ 2

and N is a moment of viscous torques in the disk. For the thin disk
(see Kato et al. (2008)), if we denote w — is a specific viscous stress
tensor:

- 1140, , R
N ~ ;r_ZE(r Wrg)€p. 9)

The equation of mass continuity:

aip oL
5 +div(pv) = 0. (10)

Consider the case of a stationary accretion. Then % = (0 and three

scalar equations following from the Navier-Stokes equation (7) are:
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We will consider these equations in the following sections of the
present paper. Since we suppose disk is axially-symmetric, these
equations should be averaged over the p-angle. For an arbitrary value
x(r, ¢,z) we define:

1 2n
(n =3z [ x(ro.20d0. (12
T Jo

This procedure is justified since the spin period of NS is much
greater than the timescales of equilibrium either in vertical or radial
direction. The azimuthal equation will also be integrated over z-
direction, but we need to specify the magnetic field first. The next
section is dedicated to the magnetic field inside the accretion disk.

3 INDUCED MAGNETIC FIELD

In the Wang (1995) author gave the derivation of the induced mag-
netic field assuming three different machanisms of its dissipation:
reconnection of field lines determined by Alfven speed, turbulent
diffusion inside the disk, reconnection outside the disk. We are in-
terested in the two last models which will be referred as “diffusion”
and “reconnection” models. In the diffusion model the growth of the
induced field is “limited by diffusive decay due to turbulent mix-
ing within the disk” and in the reconnection model the azimuthal
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Figure 1. Comparison of magnetic field on the surface of the disk calculated in
the present work (components b* (r) and b (r)) and in models of diffusion
and reconnection (b(r) as lines and b (r() as the dot). Parameter w is taken
to be 0.3 (rp/re = 0.32/3 ~ 0.45). Relative thicknesses hg = zo(r)/r = 0.3
(for smaller thicknesses b* is nearly indistinguishable from the diffusion
model). Inclination angle y = 45°. All fields are normalized to the vertical
dipole field in the equatorial plane B, = u/r3.

pitch | B, /B;| is assumed to be of order unity. Let us introduce two
parametrisations of an induced magnetic field (“upper” implies the
surface of the disk, “inner” indicates the inner edge of a viscous disk
and “inside” means inside the disk):

r ( %f) B, upper, z = 2o,

bglp = ( %) B, inner,r = ry, (13)
0, inside.
—F(l - %t)BZ upper, z = 2,

bl = F(l— %z})Br inner, r = rg, (14)
0, inside.

In Wang’s works the magnetic field is specified at the inner radius
(“inner”) and at the surfaces of the disk (“upper” at the upper surface
and minus “upper” at the lower surface). The field inside the disk is
assumed to be 0. Here I is an unknown dynamo coefficient of order
unity. Since we do not have a chance to know this coeflicient and to
make our life easier, we will ignore this coefficient henceforth. With
this notation we write down the Wang’s diffusion and reconnection
models:

diff _ .11

b‘p' =b"", (15)
11

bf;c _ {b;p r<re, (16)
b‘FJ r>re.

Our aim here is to derive the equation for the induced magnetic
field inside and around the disk and then solve it either analytically
or numerically. The total magnetic field in our model is the sum of
dipole field of a NS and some additional (induced) field which we
assume to be a non-zero only in azimuth direction:
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B =B 4 b,é, = Byér + (Byo+by)ey + B, a7

To derive the general form of an induction equation, we take
Maxwell equations and Ohm law:

G dms, 1OE

o J _cot’

o198 18
o= e a8
divB=O,

f:o-(ﬁ+%[17><§]).

Here o and v are plasma conductivity and velocity. Then we de-
note 7 = ¢2/4no-. We will assume that this coefficient, magnetic
diffusivity, is of turbulent nature (see Campbell (1992) for a justi-
fication). Applying VX to the first equation in (18) and using other
three equations, we get:

nr 9*B 0B
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The first term in (19) can be neglected (should i explain?). We
take the velocity of matter in form:

12
v L(GAL) 7, inside the disk,

" (20)
Qqr, in the magnetosphere.
and magneric diffusivity in form:
eqvr, inside the disk,
nr = . 21
€nmvr, 1in the magnetosphere.

Here 757 is a coefficient of turbulent diffusivity:

_ 2 (z0)? _ 3 (7 (zo/r ) 1/2,,1)2
VT = 31, a( . ) VGMr =210 6 01| @057 M.
(22)

Here I1; is a dimensionless parameter (II} ~ 6 — 7) that can be
calculated for the each radius after the vertical structure is found (see
6). This parameter depends extremely weakly on the distance r.

We will find €, from the condition that the induced magnetic field
should be consisted with the Wang’s “diffusion” model (15). As for
the coeflicient ¢,,, for this work it is enough to suppose €,,/e4 > 1.
We will assume the following form for the induced field:

by =0b(r,z)+bi(r,z) cosp+by(r,z)sing. (23)

It will be shown in Appendix A that there are no other components
of induced field. The boundary conditions at the inner radius and at
the surfaces of the disk follow from the equation itself, but one have
to set another condition. We set zero condition on the light cylinder
r; = c¢/€ for the induced field. Let us denote: r; = ar. In the main
body of the paper we have no intend to investigate the components
b1 and bj in the equations, so now we will discuss only the equation
for the b (see Appendix A for the detailed derivation of this equation
as well as the equations fot | and bj):

MNRAS 000, 1-15 (2022)
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Figure 2. Vertical structure of a magnetic field. Parameter w is taken to
be 0.3 (ro/re = 0.3%/3 ~ 0.45). Field evaluated at the inner radius of the
disk. Two different relative thicknesses hgy = zo(r)/r are shown: hy = 0.02
for the upper picture and ko = 0.3 for the lower picture. Inclination angle
x = 45°. Notice that b(x) is the anti-symmetric function, while b (x) is
nearly constant with iy < 1 and linear function with kg ~ 1. All fields are
normalized to the vertical dipole field in equatorial plane at the inner radius
B(Z) =u/ rg.
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Figure 3. Magnetic field on the surface of the disk calculated in the present
work, to the distance to central NS (in units of corotation radius). Parameter
w is taken to be 0.3 (ro/re = 0.3%/3 ~ 0.45). Fields were evaluated at the
upper surface (bright lines) and lower surface (pale lines) of the disk. Two
different relative thicknesses hg = zo(r)/r are shown: hy = 0.02 for the
upper picture and h(y = 0.3. Inclination angle y = 45°.

16 (0by b 8% z
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Figure 4. The same as at the Figure 3, but all the fields are normalized to
the vertical dipole field at the equator B, = u/r>. Parameter w is taken to
be 0.3 (ro/re = 0.32/3 ~ 0.45). Fields were evaluated at the upper surface
(bright lines) and lower surface (pale lines) of the disk. Two different relative
thicknesses hy = zo(r)/r are shown: hy = 0.02 for the upper picture and
ho = 0.3. Inclination angle y = 45°.

Here C = 311 u cos X/Zah2ed. To reset the conditions upon z-axis
and to determine €4, we perform the trick:

Q,
b(r.2) = %r% (1 - Q—k) FB(rn D) = bo(r D) +B(n2).  (25)

We get the following boundary condition problem for the y(r, z):

19 (9p\_B 0B _3Cz (19
ror\ ar] 2 82 2 6 \4Q ’
gl _op o
0z z

z=20(r) z==20(r) (26)
aB C
— =—(1 2
8r‘ 2r5( + w2z,

r=ro 0 3/2

Czl-a

ﬁ(r=r1)——gg T

Wang’s diffusion and reconnection models of an induced magnetic
field are shown at Figure 1 along with the magnetic field obtained
in the current work (all the fields are evaluated at the upper surface
of the disk). We clearly see that the curve for our model is close
to the diffusion model everywhere except for the regions near the
boundaries of the [rg,r;] line segment. This is not surprising since
the same mechanism for limiting the growth of the magnetic field is
adopted in both the diffusion model and our work. In opposite, the
black dashed line that indicates the component proportional to cos ¢
are far away from the blue dot denoting the Wang’s field at the inner
edge of the disk. It shows the importance of fair b, calculation rather
than order-of-magnitude estimates.

The analytical solution for this problem is given in Appendix B.
It is easy to see that magnetic field b is dominated by b, and S is
just a small correction from the boundary conditions. Thus, for the
purpose of matching our solution with Wang’s diffusion model, we
will require in r € [rg, r;] bo(z = z0) = b?piﬁ, or C = 2ucos y/hy.
This implies €; = 3I1; /4ah. We notice that this coefficient is large.

Since we found the analytical solution for this problem, it is not



necessary for us to solve it numerically. Nevertheless, we describe
the easy way to reduce it to one-dimensional equation which can be
easily solved. This is important for the problem for b and b,. We
expand the solution in series 8 = ., Zu(z) Rn(r), where Z,,(z) are
eigenfunctions of the problem

Zy +pkZ, =0,
{ n lun n (27)

Zp(20) = Z(=z20) = 0.

The solutions are sinz(n+ 1/2)z/z0, un = n(n + 1/2)/zy and
cos mnz/zg, dn = mn/zg, n varies in range 0, 1, ... + co. Since in our
particular case the function is anti-symmetric, there are no contri-
butions from consines. For the problem of b, b, there is also a
contribution from cos (0 - z/zg) = 1.

Vertical structure of the induced magnetic field evaluated at the
inner edge of the viscous disk is shown at the Figure 2. Two main
conclusions should be derived from the results at this figure. First,
the component b is (with a great precision) an anti-symmetrical
function of z-coordinate. Second, the component b; at the inner
radius is nearly a constant, if the disk is thin, and linear function, if
the thin disk assumption is not satisfied. Also, the component b5 is
sufficiently smaller than b and b for any adequate set of parameters
w, hy, x.

The radial structure of the induced magnetic field is shown at the
Figures 3 (in absolute values) and 4 (normalized to the dipole field).
Notice that as relative half-thickness becomes larger, the importance
of by and b, over b grows. For example, when /g = 0.02, the b
component is significant only near the inner edge of the disk, but
when /iy = 0.3, both b; and b, are comparable with b. Thus, to
calculate the heat release or the structure of the disk with strong
magnetic field penetrated the disk, one should account for all the
components of the induced field.

4 ANGULAR MOMENTUM TRANSPORT

Our aim in this section is to examine the equation of the angular
momentum transport (the second one in the eq. (11)). There are two
main purposes for that. First, the equation for the inner radius of the
viscous disk can be found from the equation of angular momentum
transport. In the work Revnivtsev et al. (2009) the position of the
inner radius of the accretion disk around NS was traced throughout
the X-ray outburst (see further in the text for the details). Even though
the inner radius in this work was model-dependent, this work shows
the possibility of comparison of the model for the inner radius with
phenomena observed in nature.

The second purpose of this section is to derive the expression for
the viscous stress tensor W, 4. Once this is done, the heat generation
due to viscous processes could be calculated. The heat release rate
in the disk is the key moment for calculation of vertical and radial
profiles of all parameters of the disk.

4.1 General equations

For the derivation of the next equation we also use the approxima-
tion ho(r) = zo(r)/ro ~ const and the explicit form of the dipole
magnetic field (A2). The angular velocity is assumed to be Keplerian
everywhere. We now take the second equation of the system (11),
average it over ¢ € [0, 27| and integrate over z € [—zq, z0]:
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LdQr?) d 1 f20d ,
M I —27rdr (r*Wyg) + 5 [zo I (r°ByBy)dz+
Z=20
+r2(B;By) (28)
Z=—20

In this equation we neglect all terms proportional to the power of
h = zg/r higher than 1. In all work all such terms will be neglected.
This is due to our thin disk approximation. If the thin disk condition
is not met, the much bigger problems will arise: non-keplerian rota-
tion, non-locality of pressure and radiative flux (vertical and radial
equations will not divide).

This equation was obtained in Wang (1997). The way in which
one can get the algebraic equation for the inner radius was shown in
Bozzo et al. (2018) (Wang presented the equation earlier, but did not
report how it was obtained and what the solutions are). It is seems like
in both works the authors have not considered the proper expression
for the dipole magnetic field. As a result, some terms in the final
equations was missing. It easily can be seen from the equation (26)
that the field b(r, z) is the anti-symmetric function of z. Thus one can
write b(z = zg) = —b(z = —z0). The integral of the b over [—z(, z¢]
is zero.

From the numerical solutions of the equations for by, b, follows
that b1 (z) is not only not-anti-symmetric, but rather a constant over
all the interval [—z(, zo] near the inner radius r¢. Thus we can write
by (ro,z0) = by1(rg,—zo) and f_Z;)O b1 (ro, 2)dz = 2z9b1(r,0). In
opposite, b1 (z) becomes nearly-anti-symmetric far away from the
inner edge of the disk. Taking the induced magnetic field in a form
(23) and the dipole field of the NS as in the equation (A2), we get
from the last equation (28):

. d(Qr?) d , u 20 d (b
M o —27rdr(r Wrgp) + zsm,\//_zo o ( p )dz+
u 3 Z=20
+ —(=bcosy + =bhsiny) (29)
2r 2 =—2

This is the most general (with the assumptions made) equation
of motion of the matter in the disk. If one sets the inner conditions
for the viscous torque, the position of the inner radius can be found
(see the next subsection). If the inner condition for the viscous stress
tensor is set at the inner radius, the viscous tensor itself can be found.

4.2 Inner radius

Now, to obtain the equation for the inner radius of the viscous disk,
we want to do several steps.

There are works (chashkina, ???) where the authors assume some
external torques act on the inner edge of the disk. Instead, to make
live easier, we require quasi-standard condition to be satisfied at the
inner edge:

Wi =0. (30)
r=r()—0

It will be shown that at the distances r > 2 — 3r( this model is
actually very similar to the ones described above and it also allows to
calculate the effective “torque at the inner edge” that would give the
similar results. This condition is not important for the calculation of
the inner radius, but will be used as an initial condition for the Wy .

Another condition at the inner edge is required. We suppose that
the viscous torque at the inner edge is also zero:

MNRAS 000, 1-15 (2022)
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Figure 5. Dependence of the position of the inner radius of a viscous accretion disk (in units of corotation radius) on the accretion rate M. Magnetic dipole

moment is fixed at u = 100G - cm?.

d(r*Wry)

e =0. €1V}

r=ro

With these conditions the equation (29) yields the equation for
the inner radius of viscous disk ry. With all being said about the
magnetic field behaviour near the inner edge of the disk, we rewrite
the general equation (29) as follows (we denote the quantities x on
the surface of the disk as x*):

sin y. (32)

70,0

M\GM
%—ro = b"(rg) cos y — 2 24 (ﬁ)
u

=
ro Oar\ r

Now all we should do is specify the model for the induced magnetic
field. For parametrizations / (13) and /7 (14) we obtain:

1/2 = £1124=10/3 [(1 — w)cos? y — ho(8w — 11) sinz)(] , param. 1,

1/2= 12,7713 [(1 — w) cos? y — ho(5w - 8) sinz)(] ,
(33)
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param. II.

The inner radius ro = r¢ - w2/3, where w for Wang’s diffusion and
reconnection models are:

diff

w™ = solution for param. II,
W = solution for param. Il if w < 1, (34)
solution for param. I if w < 1.

The real inner radius is calculated as r;;, = max(rg, Rmax) With
Rmax = max(Risco, Rs). We will denote the real inner radius r;,, as
ro anyway.

At the Figure 5 we show the inner radius dependence on the accre-
tion rate for the diffusion and reconnection models of the magnetic
field (solutions of (34)) and for our model (solution of the general
equation (32)). The “Alfven” curve indicates the inner radius cal-
culated as rg = (,u4/MzGM)'/7. All three models of the induced
magnetic field are close to “Alfven” curve when the accretion rate
is high. When the accretion rate is weak, though, all models show
that the inner radius would not increase unlimited, as in “Alfven”
model, but would limited by some value. In case of inclination angle
x =0and hy < 1, this value is corotation radius: r(y < r¢. This was
shown in Bozzo et al. (2018) already. It worth to mention that this
limit can exceed the corotation radius in case of y # 0. In the case
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of our model the inner radius cannot exceed the corotation radius
significantly.

4.3 Viscous stress tensor

Now having the inner radius r(, one can calculate the viscous stress
tensor.We will denote the parameters onto the surface of the disk
with the index “, e.g., the induced field at the z = z( is b';. We also
introduce I,(r): by (r,z) integrated over the z-coordinate, I(r) =

“ b (r,z)dz. From the equation of angular momentum transport

—20
(29) we can obtain:

y ropu

_MQy (1_ /r_o)+u008)(/ b (p)dp_
27 r 2nr2 Jry P

3 uhsiny /, b‘{(p)d _ psiny (Iz(r) _ I(r)
2 272 1o P P 2 r ro

Wy =

) . (3%)

Let us consider the diffusion and reconnection models. In these
models we assume b to exist only on the inner radius, i.e., b (r) =
bil““er if r = rg and by (r) = O elsewhere. This is, of course, an
oversimplification, but numerical results of the present paper show
that the assumptions mentioned above are probably not far from truth.
We do not give the expressions for viscous tensor with these models
of induced magnetic field due to cumbersomeness of the formulas. In
the Figure 6 the comparison between viscous tensors in these models
and in our model of magnetic field is shown. We can see that when the
accretion rate is high, the absolute value of a viscous tensor is smaller
that the one without the magnetic field. Indeed, the inner radius of
the viscous disk is bigger than Risco because of the magnetic field
pressure, but the energy release due to magnetic field is still small.
As the accretion rate decreases, the relative impact of the magnetic
field into the energy release increases and even becomes larger than
in the standard disk model.
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5 SPECTRA OF THE DISK

In this section we show how the spectra of the disk changes with the
presence of the strong magnetic field (of with small accretion rate).
We want to emphasize that there is no proper spectra modelling in
this paper. We apply the black-body radiation model, and all results of
this section only show that the spectra of the disk around magnetized
star can differ from the spectra of the disk around the black hole.

The viscous tensor (35) depends on the relative half-thickness of
the disk Ay which is to be found. Nevertheless, in the following
sections it will be shown that Ao (r) is very weak function of r and
thus can be approximated by constant value; also we will find that
hy = 0.02 for the standard disk and hy = 0.06 for the strongly
magnetized disk are good approximations. We will use them in this
section.

One can calculate the radiation flux from the surface of the disk:

Qo= > ror (36)

and the effective surface temperature using Stephan-Boltzmann law
with the constant o7,:

Tefs = (Qolop)'/*. (37)
In isothermal atmosphere without the scattering the Planck spec-
trum is formed:
2hy? 1
2 exp(hv/kT)-1"
Let d will be the distance to the system and cos 7is the cosine of the
inclination angle (angle between the disk axis and the line of sight):

F d2 Tout
(v—), = 27r/ Iyrdr. 39)
COS 1 i

I, = leanc —

(33

n

It can easily be shown that the intermediate asymptotic (vo < 1
and vo(r(,u,/r0)3/4 > 1) for the spectra are F(v) « v1/3 for the
weak magnetic field or big accretion rate and F(v) ~ V7 for the
strong magnetic field or weak accretion.

The results of blackbody spectrum calculation are shown at the
figure 7. As the accretion rate decreases, the relative contribution
of the magnetic field into the energy release increases. When the
accretion rate is weak (or the magnetic field is strong!), spectrum can
be significantly different from the one in standard model of accretion.

6 VERTICAL STRUCTURE

Now the vertical structure can be calculated. We use the method
similar to that of II-parameters introduced in Ketsaris & Shakura
(1998). The advantage of this method is that the radial structure can
easily be calculated after the computation of the vertical structure
on the each radius. This method also allows to make an analytical
analysis of the results. Since we want to solve the first kind boundary
value problem with only one eigenvalue, not four, we modified this
method.

6.1 Main equations

We will use the model of ideal gas:

P= ﬁ (40)
u

MNRAS 000, 1-15 (2022)
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Figure 7. Blackbody spectra of the disk for different accretion rates M = 10'°g/s (usual for the peak of the X-ray outburst, left column) and M = 1013g/s
(usual for the plateau of the X-ray outburst, right column). Different inclinations y = 0°, y = 60° are considered. u = 102G - cm?.

and ¢ = 0.6 is assumed everywhere. First, let us take the equation
of the vertical hydromagnetic equilibrium (last equation in (11)) and
average it over ¢ € [0, 2x]. It yields:

0 B? > Lo
a—z P+§ :—kaz+ E(BV)BZ. 41)

With a bunch of boring mathematics it becomes:

b2 + b3 i
oP 1 2)_;15111)(% @2)

1 o
Q2 — 2 p? .
0z PEAE 81 0z ( * 2 8nr3 9z

For our conveniance we introduce the “magnetic gradient” which
is essentially all the effects from the magnetic field:

aP 19 b? + b3 in y 9b
) o222 _ psmy 0by (43)
0z ) 81 dz 2

8nr3 9z

Q is the radiative flux along the z-axis. Let €44 = aT* be the
radiation energy density (a = 407, /c). If one neglects all the mech-
anisms of the heat transfer except for the radiative one, the equation
of the heat transfer is:

¢ déraq
= ——— e 44
0 3krp dz e

MNRAS 000, 1-15 (2022)

Here r«g is Rosseland mean opacity. We will consider the analyt-
ical opacity:

L

KR = K 7% (45)

If the opacity is determined by the electron scattering, kg = 0
— Thompson opacity, t = ¥ = 0,k = oy = 0.335 cm?/g for the
solar abundance. If the opacity is determined by the bremsstrahlung,
t=1,y=7/2,k0 =5-10** cm’ K72 g‘2 — Kramers opacity. (see,
e.g., Lipunova et al. 2018 Lipunova et al. (2018)).

We also introduce X(z) as a mass coordinate:

20
Z=/0 p(z1)dzy, (46)

and 2X(zo(r)) is the disk surface density at the distance r from
the NS. The full system of equations for the vertical structure then:

aP , (0P

—=—-pQiz+|——| ,

oz~ s (6z)m

d_z__P

dz "

¢ d(aTh) “n
3kgp  dz

Y - r& éQ aP

dz " ar T2k



Now we normalize all quantities: P = p - Pg,T = 0 - Ty, 2 =
o-Z0/2,0 =q-Qp, z=20(1-¢). ¢ =0(1) corresponds to the
surface (equator) of the disk. Note that these are not a normalizations
to the values in the disk equator as in Ketsaris & Shakura (1998).

Instead, we choose these values as follows: Q) is the same as in (36),
2.2
_ 200 _ Qzm _ 2Pypzo : :
Py = alyz =R Xy = R, For the dimensionless
quantities the equation (47) takes the form:

_Z_o(a_P

PO 0z m,

do

A 48)

d—§ gLry+4’
dq

d¢

with

dp_

ag
do

1-9

3 QokoP§H 2o

, 49
4 ac?&‘“TOH%LS @

For a given r coefficient K depends only on the disk height zg. The
system (48) should be integrated from ¢ = 0 (surface of the disk) to
{ =1 (the equator plane). If four initial conditions onto a surface of
the disk and one boundary condition in the disk plane are set, one
can calculate the distribution of dimensionless quantities p, g, o, 6
and determine the disk height z(.

6.2 Boundary and initial conditions

The optical thickness will be counted from outside to the inside of
the disk:

z
T(Z)=—/ KRpPAZ. (50)
o
To jointly account for the effects of scattering and absorption,

the effective optical thickness is introduced (Zel’dovich & Shakura
(1969)):

z
Teff(z) = _/ VKabs (Ksc + Kabs)pdz, (S1)

or

dTeff Kabs
= : . 52
dr Kabs + Ksc 2

with k,p, Ksc are opacity coeflicients by absorption and scattering.
We use the Eddington approximation for the temperature in the
photosphere of the disk:

1/4
1 3T) . (53)

T=Tegs- (5 sy

The surface of the disk if defined as the height at which the effective
optical thickness 7. r ¢ = 2/3.

Now we have to understand the behaviour of the pressure P(7) in
the photosphere. This step is sufficient to define the initial condition
for pressure as well as for the searching for the 7. Consider the
equation (42). Then multiply it by/<_I and notice that kpdz = —dT:
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2092
onk 1(8P) . (54)
m

kp \ 0z

The vertical coordinate is assumed to change insignificantly while
Teff = 2/3 is accumulated, so z = zo. Using (53), equation (54) can
be integrated over 7/ € [0, 7(zp)] from P(7 = 0) = O consistently
with the equation (52) to obtain P(7(z¢)) and 7(zg).

Initial conditions for the dimensionless flux and mass are just
0({ =0) =0, q({ =0) = 1. The additional condition is following
from the symmetry of the system about the equator:

dr K Kp

q({=1)=0. (55)

Now, we solve the system (48) as the initial value problem with the
parameter z( and vary z to satisfy the condition (55).

The solution of the system (48) is shown at the figure 8. The struc-
ture was calculated in the assumptions of Kramers or Thompson
opacity. We conclude that the exact form of the opacity is unimportant
for the vertical distribution of dimensionless parameters. To be com-
pletely honest, nothing (opacity, inclination y, model of magnetic
field) is important for the vertical structure. It is almost independent
on everything.

Now in would be nice to calculate the vertical structure with the
extreme parameters of accretion and neutron star, say, M = 10'7g/s
and u = 100G - ¢m? and with the same frequency f = 200Hz. We
were able to do it. Results are displayed at the figure 9

7 RADIAL STRUCTURE

Ketsaris & Shakura introduced parameters I1; 4 which (in their
approach) are to be determined after the boundary-condition problem
is solved. These parameters are:

_ Qzgm
'™ g7
e
I, = zope”
Z20Pc
0 RT3, (56)
3= —,
Wron
= 3 (Ters 4 Sekopl
n\n ) e

Values denoted as ‘c’ are evaluated in the centre of the disk. These
parameters can be calculated in our approach as well. Combina-
tions of these parameters are basically the coefficients in order-of-
magnitude formulas for the parameters of the disk. ITj-parameter
is also needed for the viscosity coefficient, and, thus, for the mag-
netic field. All these parameters are weak functions of the accretion
rate. The system (56) is essentially the system of algebraic equa-
tions for central temperature and pressure, surface density, relative
half-thickness of the disk. Let us introduce f(r):

M £, (57)
T

and some additional parameters (see Suleimanov et al. (2007) for
the investigation of their behaviour):

Wrcp(r) ==

M, = (M 21311, 2) /40 ~ 2.6,
My = (M T3T612)!1/20 ~ 1.03, (58)
N7 = (I} ' 213, 2) /20 ~ 1.09.

MNRAS 000, 1-15 (2022)
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Figure 8. Distribution of dimensionless parameters of the disk (pressure, temperature, radiative flux) over the vertical coordinate. In left (right) column the
Kramers (Thompson) opacity is taken. In the top row the dependence on the model is shown. Solid line corresponds to standard disk case, dashed line corresponds
to the reconnection model of induced field, dash-dotted line — to our model of the magnetic field. In the low row only our model of magnetic field is adopted,
inclination angles y = 0° (dash-dotted line) and y = 90° (scattering) are shown. Note that only near-surface regions of the disk are sufficiently alternated by
model of opacity, inclination angle, model of magnetic field. The interiors of the disk are almost indifferent to all assumptions about the disk or magnetic field.
Standard non-magnetic model is also shown for the reference at the bottom two figures as pale solid curves. M = 10'3g /s, u = 102G - cm?.

Then from the system (56) we find:

z0/r = 0.007M; 3313100~ 10p )8 () 3207,

S =63 10°M, 2] 004534 f (ry7110m, (59)
T =7.7-10°M, [}, 015,734 £ (1) 310117,

Thus we can calculate the vertical structure on each radius. We
will know the I1-parameters and the thickness of he disk z( for each
radius. Using (59), we can calculate any other parameter inside the
disk. The results, relative half-thickness zq/r, surface density X, and
the temperature in the equatorial plane are shown at the figure 10
(for different models of the induced magnetic field, y = 0°) and at
thefigure 11 (for different y, our model for the field is adopted).

MNRAS 000, 1-15 (2022)

8 DISCUSSION

In the present paper we considered the effects of the magnetic field
of a central star on a disk assuming that magnetic field can penetrate
the disk. The purpose of this paper was to estimate how the vertical
structure changes if one includes the magnetic field into considera-
tion and how the presence of the magnetic field modifies the radial
structure. The calculation of the vertical structure is important for
our understanding of whether the disk can exist at the distances sig-
nificantly closer than the Alfven radius. We proved that the disk can
exist at such distances even when the effects of the magnetic field in
the stress tensor are bigger than these of matter.

In section 3 we, being unable to get satisfaction from the already
existed models of induced magnetic field, properly derived the in-
duction equation for the azimutal magnetic field. Then we found a
way to solve it without complex 3-d simulations: assuming thinness
and quasi-stationarity of the disk, there is no need for them since
this equation can be reduced to the system of ordinary differential



dependence on model

100 4

1073

100 4

1073

Figure 9. The same as at the fig. 8, but with only Kramers opacity and
u=10°G - em?, M =10"7g/s.

equations with boundary conditions. Even though the formula for
the induced field onto the surface of the disk looks similar to the
one obtained in Wang (1995) ( Wang (1997) for the case of an
inclined rotator), we demonstrated that there are ¢-dependent com-
ponents of the induced field that should be considered. The magnetic
field inside the disk is shown to depend on semi-thickness of the
disk h(r) = zo(r)/r and on parameter I1; (see sections 3 and 6).
This means that the equations of magnetic field structure and disk
structure should be solved self-consistently.

In section 4 we derived the equation for the inner radius rg of the
viscous accretion disk. Results are compared with the model with
ro being an Alfven radius r,. Results are close to the ones already
obtained in KRO7 (in the case on inclination angle y = 0) and in
Wang (1995), Wang (1997), Bozzo et al. (2018). We then derived an
expression for the viscous stress tensor W;.,. Comparison with the
standard disk formula shows that the magnetic field can significantly
modify stress tensor. In section 5 we demonstrate the possibility for a
strong magnetic field to change the spectra of the accretion disk. The
intermediate asymptotic F,, o V37 for the strong magnetic field (or
weak accretion) reminds the result obtained in Siuniaev & Shakura
(1977) for the disks without an accretion onto the central object
(“dead disks™).

In section 6 the vertical structure of the disk is calculated using
equations of hydromagnetic equilibrium. It is clear that the distri-
butions of parameters inside the disk (like a gas pressure, temper-
ature, the energy flux) normalized to the corresponding values in
the disk equator are not sufficiently modified by the magnetic field.
We were able to calculate the vertical structure for the parameters
o= 1039G - em3, M = 10'78/5 _ This can be understood as the possi-
bility of existence of accretion disks around highly magnetized stars.
Such systems may be observed as an ULXS.

In opposite, the absolute values of the parameters of the disk may
considerably depend on the magnetic field. We calculate the radial

Structure of magnetized accretion disk 11

distributions of some important disk parameters in the section 7.
When the relative importance of the magnetic field is rather small,
the energy release rate decreases with increasing magnetic field due
to the increasing inner radius of the viscous disk. But if the accretion
rate decreases considerably (or, one can imagine that the magnetic
field is somehow became stronger), disk can become brighter than
the one without the magnetic field.
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APPENDIX A: DERIVATION OF THE INDUCTION
EQUATION

We will start from the equation (19) without the first term:

dB n L d .
—=rot[z7xB]+nTAB+ BRI v x B]|. (A1)
ot nr

The components of the dipole field are obtained easily ??????:

_’d = m [(2r2 sin y cos ¢ + 3rzcos y — 2 sin y cos ¢)éy+
+ (sin y sing(r? + zz))2¢+

+ (—r% cos y + 3rzsin y cos ¢ + 222 cos x)éz].  (A2)

Even though the monstosity of this expression beckons us to ne-

glect all the terms proportional to z (since & = z/r < 1), we should

MNRAS 000, 1-15 (2022)
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Figure 10. Radial distributions of parameters of the disk: relative half-thickness z/r, central surface density .. and central temperature 7.. Different models

of the induced magnetic field are displayed. Inclination angle y = 0 everywhere.

not do it. In this paper we want to obtain all our formulas with the

accuracy of O(h) neglecting the terms h2, h3..., but since magnetic

field is in the equations in non-trivial ways (for example, in second z

derivative), all terms in (A2) will contribute in final expression.
Then we use:

~_=1_ VéBr. _ (0(VBy) d(VBy)
rot [v x B] e L ( et e (A3)
The last term in the (A1):
d T 1. .= . VB
gra—nTX[VXB] =—[er><[v><B]]=e‘p C. (A4)
nr 2r 2r

The Laplace operator for the vector field in the cylindrical coordi-
nates:

AE:(AB,—&—

r2 r 7'2 7'2

MNRAS 000, 1-15 (2022)

2 aBV - B‘P 2 aB‘P - -
—2%) er+(AB‘p -—+= 90 €y+AB;e;

(AS)
If the vector field is quasi-stationary than Beskin???:
dA A, . O0Ag_. A,
E: S( (9(;7' e,-+ﬁe¢+a—;ez). (A6)
In that case three components of the induction equation are:
0B V 0B, B, 2 0B
Q r=___)+n ABr__’__ . s
dp r dy r2 2 dp
d(Byo+by) 9(VB;) d(VB;) VB
Q, w07 V) _ ( z)+ ( r)+_r+
(9<p aZ ar 2r (A7)
AB By, 2 0By,
+ = T 5 T4 T4 ’
T2Pe ™ 21275,
B
Qy—= =nAB; = 0.
de

It has already been said that in our model the matter moves with
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Figure 11. Radial distributions of parameters of the disk: relative half-thickness zo /7, central surface density X and central temperature 7.. Different inclination
angles y are shown. The model of magnetic field is this work model. Standard disk case is also present as pale gray curves.

a Keplerian velocity within the disk and corotates with NS angular
velocity without the disk. Thus,

v V(-1 disk, —w
or r { 1 magnetosphere. }+er0 w 0(r=ro), (A8)
ov

—— = (Vin(r) = Va(r)(6(z = z9) — 6(z + 20))-

0z (a9

In our model there are only one (azimuthal) non-trivial component
of induced magnetic field. Using (17), we finally get (watch out for
your eyes!):

by

3u
V—(si 3
P ! (sin y cos ¢ + 3z/r cos y )+

er% sin y cos ¢ + Qg
r

+r%(— cos y+3z/r sin y cos ¢) (Vi (r)=Va(r)) [6(z—z0) =6 (z+z0)] -

B ﬂ{ 7 sin y cos ¢ + 22—7§cos/\/,

disk, +
r4 | 4sinycosp+9Zcos x,

magnetosphere.

1 -
Qg1 @

ﬁ(2 sin y cos ¢ + 3z/r cos x)8(r — ro)+
w r3

=

1/2r,
+
73

Vor/nr(=0? =1/2r?)
X (2sin y cos ¢ + 3z/r cos y )+

2usin y
+TIT( 5
r

disk,
magnetosphere.

(2sing +cos ¢) + L[b¢]) . (A10)
Here operator L[F] is:

2

S
~

10 ( 8F\ 1 6%F
L[F]Z_E( _)+r_2—+ ) (All)

F + 2
r _r .=
r ar 6(,02 r2  r2

D
Q:|Q:
™

Z
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First of all, there are only terms proportional to 1, cos ¢ or sin ¢ in
this equation. This means that the induced field also should satisty
this rule. This looks awful, but now we need only the components
of the induced magnetic field not dependent on ¢. For b = b(r, z)
inside the disk we get the equation:

li (r%) — 2 B_ = 3,uV COS Y —— = (A12)

ror\ or r2 972

Using the formulas for the magnetic diffusivity (21) and (22), we
come to the first equation in (24). Now we integrate (A10) over

T 11/2

[zo — €, z0 + €], with € < zg. Assuming nmagnelOSphere > ndlSk
obtain the boundary condition on the surface of the disk:

] B 1 (A13)
BZ =20 2 Qk

We remind that C = 3II; u cos )(/2ah26d. This expression con-
tains unknown parameter €. It was explained in the main text why
we require C = 2u cos x /hg. This implies €4 = 3I1; /4ah.

The boundary condition on the lower surface of the disk is obtained
in exactly the same way. The boundary condition on the inner radius
of the disk can be found similarly:

ob|  3c(-w 1 z
or - 2 Mg (AlD)
r=ro 0

The system of equations for b, by with boundary conditions can
be derived from (A 10) as well. Since all the calculations are the same
as before, we give the final system:

19 ( dby\ _by—by 2 32 52p,
S22 40 - ) e+ 22
ror (r ar )+ r2 hor? \r 2 o2 T
10 (b)) batby 2 (r\? 9% ;
ror r r2 hor? \re a2 T
b, b, .
_— = — =gz,
02 |z=z, z=-20
ob, ob,
—_— s :0,
02 |z=zp 02 lz=—z
an |
oo™ r’
971 =0,
ar r=ro
bi(r=r)=by(r=r)=0
(A15)

Here right-hand sides are:
poodsin (3 32
s ko ho \re '

4psin y
fo=- 5

. 3/2 (A16)
3

)

r re

1 -
g = —2usin y—
hor

What we want to do next is to make a substitution to reset condi-
tions along z-axis:

MNRAS 000, 1-15 (2022)

by =p1+8z "2
1=B1+8z-2 (A17)
by = ps.
and expand the solution in the series in terms of eigenfunctions of
the Sturm-Liouville problem (27).

APPENDIX B: ANALYTICAL SOLUTION FOR THE
INDUCTION EQUATION

Letus take the problem (26) and turn our variables into dimensionless
ones. We normalize f3 to the vertical dipole field: 8 — -y cos ,\//rg.
The distance is measured in units of corotation radius: r — r -
rc. Assuming that relative half-thickness of the disk hg = zo(r)/r
changes only slightly over the wide range of distances, we write
z0/re = ho = const. Then, vertical coordinate is in units of the
half-thickness of the disk: z = hgr - x. With these changes:

BY_ B, L PP _ X (130
rﬁr( 3r) r2+h(2)r2 0x2 _6r6 (7r /8 3/2)’
Bx=0)=0
op|
ax| O (B1)

x=1
B _1+w/2
| _ e wdB
r=w?3
32
B(r=a)= 7%

All the boundary conditions and the right-hand side of the equation
are anti-symmetric functions of x. This means that 8 is also anti-
symmetric function of x. Notice that this is not true for the b (r, z)
and b;(r, 7). We consider the problem on the interval [0, 1] instead
of [—1, 1] by changing the boundary condition at the lower surface

to the boundary condition at the equator: S(x = 0) = O due to

anti-symmetry. Now let’s find the solution in form

B(r,x) = " sin (nx) Bu(r). (B2)
n=0

For the coefficients B, (r) we obtain 1-dimensional boundary con-
dition problem (BC problem). Using linearity of all equations here,
we divide B into sum of two problems: B(r) = u(r) + v(r). The
problem for u includes all zero BC but non-zero right hand side of
the equation. In opposite, the problem for v has trivial right hand side
of the equation but non-zero BC:

l(ru’)’ —

5= f(),
u’(w2/3) =0
u(a) = (B3)

(—1)"1 7r3/2
fr=6=73 rﬁ( 7 —3).

n




1 M3
Ly - Mav _,
' "C) 1+ w)2
V(@) =2 8/3 °
o Wb (B4)

a’l? —1

v(a) = 2—3
a

Here M% =1+ ,u%l / h(z). This step is necessary for the analytical
solving of the equation, but actually it is faster and easier to solve
the problem numerically for the acceptable number of n-s just for
the B, (r) without any further preparations. For example, we do
not know the analytical solution for the b, by, and we find these
components using expansion (B2) and solving 1-d BC problem for
the coefficients.

Anyway, the analytical solutions are important since they give the
opportunity to test our codes and they are beautiful sometimes.

The problem for v has the solution:

v(r) =AM + Br~M, (BS)

and coeflicients A, B are to be found from the boudary conditions.
This is just simple mathematics, so we will not stop here.

The problem for u can be solved in the following way. We solve
the Sturm-Liuoville problem with the corresponding boundary con-
ditions:

Lo, My
r(rv) - P+ A4,y =0, (B6)
+zero BC.

Eigenfunctions are

Im,, (aNAmn)
Vmn = Amn) — N Amn) — B7
v Im, (rNAmn) = N, (ry Amn) Nt (@) (B7)

where eigenvalues are roots of the equation:

-’1,\/1" ("-’2/3 VAmn) N;VI,, (w2/3 VAmn)

= (B8)
JM,, (aVAun) NM,, (aVamn)
Then
va(r) = - fﬂvmn(r). (B9)
m mn
Here
1 a
Smn = W,/Zﬂ Vmnrdr, (B10)
mn w='-
2 “ 2
[1¥mnl| =/2/‘ Fimndr. (B11)
w2/

This paper has been typeset from a TEX/IXTEX file prepared by the author.
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