ГАИШ МГУ Отдел Релятивистской Астрофизики

Отчёт за пять лет

Д.А. Колесников

Основные результаты

- 1. Создан код синтеза кривых блеска Discostar для моделирования орбитальных кривых блеска и рентгеновской модуляции потока рентгеновских двойных систем с изгибным аккреционным диском.
- Объяснена 35-дневная модуляция оптических кривых блеска системы HZ Her/Her X-1 в рамках модели прецессирующего, взаимодействующего с магнитосферой нейтронной звезды, аккреционного диска.
- Объяснена орбитальная модуляция рентгеновского потока Her X-1 в состоянии минимимума 35-дневного цикла по данным измерений спутника SRG/eROSITA.
- Объяснена 35-дневная модуляция частоты рентгеновского пульсара Her X-1 по данным измерений спутника Fermi в рамках модели трёхосной свободной прецессии нейтронной звезды.
- По результатам работы над HZ Her/Her X-1 успешно защищена диссертация на соискание степени кандидата физико-математических наук.

Uhuru: discovery of X-ray source Her X-1 (2U 1705+34)

November, 1971 — first detection of X-ray source in the constellation $Hercules^1, \sim 50~years$ ago

The fourth Uhuru catalog of X-ray sources Forman et al., 1978

Riccardo Giacconi and *Uhuru*

¹Tananbaum et al., 1972

Uhuru: Her X-1 pulsation

The counts accumulated in 0.096-second bins. The heavier curve is a minimum χ^2 fit to the pulsations 2

²Tananbaum et al., 1972

Uhuru: Her X-1 pulse arriving time

O-C for time of occurrence of a pulse. Orbial period is 1.7 days.³

³Tananbaum et al., 1972

Scheme of the X-ray binary HZ Her/Her X-1

Orbital modulation of the optical flux

First optical light curve by the glass photoplates of the Sternberg Astronomical $\ensuremath{\mathsf{Institute}^4}$

⁴Cherepashchuk et al., 1972

35-day cycle

35-day modulation of X-ray flux by Swift/BAT

35-day cycle

Precession phases of the outer parts of the accretion disk

35-day X-ray flux modulation

Эволюция орбитальных кривых блеска с фазой 35-дневного цикла

Начало главного включения (Main-on) принято за начало 35-дневного цикла (дискретная фаза 0)

Измеренный относительный поток в фильтре B и V как функция орбитальной фазы, распределённый 20 дискретным фазам 35-дневного цикла (0–19)

I Modelling of the B and V orbittal light curves

Код синтеза синтеза кривых блеска

Изгибный, прецессирующий аккреционный диск⁵

Распределение температуры по поверхности звезды-донора и аккреционного диска

⁵https://github.com/eliseys/discostar

Модель аккреционного диска

Угол прецессии Φ

Толщина внешнего края Н

Наклон внешнего края к орбитальной плоскости θ_{out}

Наклон внутреннего края к орбитальной плоскости θ_{in}

Угол между линиями узлов внешнего и внутреннего края Z

Поток $F_{B,V}$

Схема аккреционного диска

Parameters of the disk

Z fixed at descreet values $[-90, \ldots, 90]$

Inclinations θ_{in} and θ_{out} and specific flux $F_{B,V}$ are free parameters

$$\chi^2 = \frac{1}{N - N_{var}} \sum_{i}^{N} [y_i - f(x_i)]^2$$

Angle ${\it Z}$ as function of 35-day cycle

Magnetic torque, acting on the disk⁶

Two-axial free precession in the model developed by Postnov et al. 2013

⁶Lipunov & Shakura 1976; Lipunov et al. 1981; Lipunov 1987

Magnetic torque K_m and angle Z

Angle Z and K_m as function of 35-day cycle

Synthetic light curves of HZ Her⁷

Measured B and V relative flux as function of the orbital phase, distributed over 20 discreet phases of 35-day cycle (poins) and theoreticla light curves (lines)

⁷Kolesnikov et al. 2020

II

Modelling of the orbital modulation of Her X-1 X-ray flux at low state by *SRG*/eROSITA data

First and second X-ray all-sky survey by SRG/eROSITA

Observations of Her X-1 at first survey occured in 2020 March, 5-7; at second survey in 2020 September, 4-6.

Her X-1 X-ray flux by *Swift*/BAT. Verticla lines — time of *SRG*/eROSITA observations.

Low-state orbital modulation

X-ray flux during the First and Second all-sky survey measured by *SRG*/eROSITA. Solid vertical lines indicate orbital phase 0.

X-ray scattering zones⁸

- 1. Corona above irradiated part of the donor star
- 2. Corona above accretion disk
- 3. Optically thick atmosphere of the donor star

Scheme of HZ Her/Her X-1

⁸Basko & Sunyaev 1973; Basko et al. 1974; Бочкарев 1989; Бочкарев и Карицкая 1992

X-ray scattering zones⁹

- 1. Corona above irradiated part of the donor star
- 2. Corona above accretion disk
- 3. Optically thick atmosphere of the donor star

Сечение HZ Her/Her X-1 плоскостью x - z (схема)

⁹Basko & Sunyaev 1973; Basko et al. 1974; Бочкарев 1989; Бочкарев и Карицкая 1992

X-ray scattering zones¹⁰

- 1. Corona above irradiated part of the donor star
- 2. Corona above accretion disk \longrightarrow const
- 3. Optically thick atmosphere of the donor star

Scheme of HZ Her/Her X-1

¹⁰Basko & Sunyaev 1973; Basko et al. 1974; Бочкарев 1989; Бочкарев и Карицкая 1992

Results of the modelling¹¹

Observed and theoretical X-ray flux as function of orbital phase. In the boxes is synthesized view of the corona above donor star at the orbital phase 0.5

¹¹Shakura et al. 2021

Evidence for neutron star triaxial free precession in Her X-1 from *Fermi*/GBM pulse period measurements

Her X-1 pulsar frequency measurements

Short-term (~35 day) amplitude $\frac{\delta \Omega(t)}{2\pi} \sim 0.5 \ \mu$ Hz

Her X-1 pulsar frequency measured by Fermi/GBM

Long-term pulsar frequency measurements

Long-term (4000 days) pulsar frequency variations $\frac{\Omega_0(t)}{2\pi} \sim 5 - 10 \ \mu$ Hz. The frequency of the pulsar is represented as the sum of the long-term and periodic variations:

 $\Omega(t) = \Omega_0(t) + \delta\Omega(t)$

Measured *Fermi*/GBM pulsar frequency of Her X-1 during more than 4000 days. Gray line indicate the long-term frequency variations $\frac{\Omega_0(t)}{2\pi}$

Triaxial free precession¹²

 $I_1 < I_2 < I_3$ — principal inertia moments. Path of the vector Ω is described by the following equations:

$$\Omega_{1} = \sqrt{\frac{2EI_{3} - M^{2}}{I_{1}(I_{3} - I_{1})}} \operatorname{cn}\tau$$
$$\Omega_{2} = \sqrt{\frac{2EI_{3} - M^{2}}{I_{2}(I_{3} - I_{2})}} \operatorname{sn}\tau$$
$$\Omega_{3} = \sqrt{\frac{M^{2} - 2EI_{1}}{I_{3}(I_{3} - I_{1})}} \operatorname{dn}\tau$$

where $cn\tau$, $sn\tau$, $dn\tau$ — Jacobi elliptic functions, τ — dimentionless time

Path of the vector $\boldsymbol{\Omega}$ on the surface of the NS

¹²Landau & Lifshitz, 1976

Assuming magnetic pole N as the dominating source of X-ray radiation during Main-on: $$\mathbf{x}$$

$$\delta\Omega(t) = \frac{d\Phi}{dt},$$

where Φ is precession angle:

Path of the vector ${\boldsymbol \Omega}$ and precession angle Φ

Intervals with constant NS free precession period

Interval number k	P_k	$\Delta I_3 \times 10^{-7}$	φ_0^*	Reduced χ^2
I	35.14	6.68	-0.45	7.2
II	35.02	6.70	-0.305	9.3
III	34.85	6.73	0.024	4.9
IV	35.25	6.67	-1.13	3.2
V	35.05	6.70	-0.63	4.4
VI	34.83	6.73	0.01	1.8
VII	35.1	6.69	-0.88	4.8
VIII	34.8	6.73	-0.01	4.4
IX	35.01	6.70	0.0	3.6
Х	35.0	6.70	-0.015	10.0

Fixed parameters of the model

Triaxial free precession model parameters fixed during the fitting inside k-th data intervals with constant 35-day cycle duration P_k

Parameter	Symbol	Value
$oldsymbol{\Omega}$ and I_3 axis misalignment	γ_0	50°
at zero free precession phase		
Coordinates of the	N_{ϕ}	90°
magnetic pole N	$N_{ heta}$	30°
Fractional moment inertia difference $(I_2 - I_1)/I_1$	ΔI_2	3×10^{-7}

The best-fit model

The best-fit model

The best-fit model

Спасибо за внимание!

Основные публикации

- [1] Dmitry Kolesnikov, et al., Evidence for neutron star triaxial free precession in her x-1 from fermi/gbm pulse period measurements. MNRAS, 2022.
- [2] Galina Lipunova, et al., Physical modeling of viscous disc evolution around magnetized neutron star Aql X-1 2013 outburst decay. MNRAS, 2022.
- [3] N. I. Shakura, et al., Observations of her x-1 in low states during SRG/eROSITA all-sky survey. <u>A&A</u>, 2021.
- [4] D. Kolesnikov, et al., The 35-day cycle in the x-ray binary HZ Her/Her X-1. Contributions of the Astronomical Observatory Skalnate Pleso, 2020.
- [5] D. A. Kolesnikov, et al., Modeling of 35-day superorbital cycle of B and V light curves of IMXB HZ Her/Her X-1. <u>MNRAS</u>, 2020.
- [6] L. R. Yungelson, et al., Galactic population of black holes in detached binaries with low-mass stripped helium stars: the case of lb-1 (ls v+22 25). <u>MNRAS</u>, 2020.
- [7] Nikolai I. Shakura, et al., Accretion processes in astrophysics. <u>Physics</u> Uspekhi, 2019.
- [8] K. A. Postnov, et al., Rapidly rotating neutron star progenitors. <u>MNRAS</u>, 2016.