

Остаточное магнитное поле аккреционных дисков молодых звезд

Сергей Хайбрахманов 1,2

¹Коуровская астрономическая обсерватория, УрФУ, Екатеринбург ²Кафедра общей и теоретической физики, ЧелГУ, Челябинск *e-mail: <u>khaibrakhmanov@csu.ru</u>

План доклада

- 1) Аккреционные диски молодых звезд (АД МЗ)
- 2) МГД-модель АД МЗ
 - а. Основные приближения и уравнения
 - b. Радиальная структура диска
 - с. Вертикальная структура диска
 - d. Отклонение от кеплеровского вращения
- 3) Динамика магнитных силовых трубок в АД МЗ
- 4) Заключение

Аккреционные диски молодых звезд

- Геометрически тонкие, $H \ll R$, оптически толстые
- Массы: 0.001-0.1 M_{\odot}
- Температуры: 10-1000 К

Аккреционные диски молодых звезд

→ протопланетные диски

- Геометрически тонкие, $H \ll R$, оптически толстые
- Массы: 0.001-0.1 *М*_☉
- Температуры: 10-1000 К

Магнитное поле АД МЗ

Истечения и джеты

→ косвенное указание

Поляризационное картирование → геометрия магнитного поля в АД МЗ

Истечения и джеты

→ косвенное указание

Магнитное поле АД МЗ

Зеемановское уширение (оптич. диап.) [1] Yang & Johns-Krull, 2011, ApJ, 729, 83

[2] Donati, et al., 2005, Nature, 438, 466

Остаточная намагниченность метеоритов [3] <u>Fu et al., 2020, JGRE, 125, e06260</u> [4] <u>Butler, 1972, E&PSL, 17, 120</u> [5] Cournede et al., 2015, E&PSL, 410, 62

Зеемановское расщепление линий CN (субмм) [6] <u>Vlemmings et al., 2019, A&A, 24, L7</u>

Анализ наблюдательных данных

- •АД M3 в процессе своей эволюции становятся протопланетными дисками
- В АД МЗ присутствует крупномасштабное магнитное поле, интенсивность и геометрия которого до сих пор мало изучены

Теория остаточного магнитного поля

Анализ наблюдений областей звездообразования и численные расчеты коллапса протозвездных облаков (ПЗО) показывают, что магнитный поток ПЗО частично сохраняется в процессе образования звезд (см. Дудоров, 1995, АЖ, 72, 884; <u>Dudorov & Khaibrakhmanov, 2015, AdSpRes, 55, 843</u>)

Теория остаточного магнитного поля

Анализ наблюдений областей звездообразования и численные расчеты коллапса протозвездных облаков (ПЗО) показывают, что магнитный поток ПЗО частично сохраняется в процессе образования звезд (см. Дудоров, 1995, АЖ, 72, 884; <u>Dudorov & Khaibrakhmanov, 2015, AdSpRes, 55, 843</u>)

Магнитное поле молодых звезд и их аккреционных дисков является остаточным магнитным полем родительских протозвездных облаков

МГД-модель аккреционных дисков

Цель: Исследование динамики АД МЗ с остаточным крупномасштабным магнитным полем.

Задачи:

- Разработка двумерной МГД-модели АД МЗ
- Определение интенсивности и геометрии магнитного поля АД МЗ
- Исследование условий образования планет
- Определение динамического влияния магнитного поля на структуру диска

Постановка задачи

Постановка задачи:

а) радиальная структура диска

<u>Постановка задачи</u>: б) вертикальная структура диска

<u>Постановка задачи</u>: в) источники ионизации

Основные приближения и эффекты

Радиальная структура диска: уравнения Шакуры и Сюняева (Шакура, 1972, АЖ, 49, 921; <u>Shakura, Sunyaev, 1973, A&A, 24, 337</u>)

•Вертикальная структура: магнитостатическое равновесие

- •Степень ионизации: e-, m+, g, CR, XR, RE, тепловая ионизация
- •Магнитное поле: уравнение индукции с учетом омической диффузии, магнитной амбиполярной диффузии, плавучести и эффекта Холла

-Динамика: нагрев диссипативными МГД-эффектами, изменение толщины диска, отклонение от кеплеровского вращения, ...

Основные уравнения

Уравнения МГД с учетом гравитации, вязкости (→турбулентности), магнитного поля, лучистой теплопроводности, диффузии магнитного поля

$$\begin{cases} \frac{\partial \rho}{\partial t} + \operatorname{div} (\rho \vec{v}) = 0 & (1) \\ \rho \left(\frac{\partial \vec{v}}{\partial t} + (\vec{v} \nabla) \vec{v} \right) = -\nabla \left(p + \frac{B^2}{8\pi} \right) + \rho \vec{g} + \operatorname{div} \sigma' + \frac{1}{4\pi} (\vec{B} \nabla) \vec{B} & (2) \\ \rho T \left(\frac{\partial s}{\partial t} + (\vec{v} \nabla) s \right) = \sigma_{ik}' \frac{\partial v_i}{\partial x_k} + \operatorname{div} \vec{F} & (3) \\ \frac{\partial \vec{B}}{\partial t} = \operatorname{rot} [\vec{v}, \vec{B}] + \eta \nabla^2 \vec{B} & (4) \end{cases}$$

где σ_{ik} - тензор вязких напряжений, \vec{F} - поток лучистой энергии, η – коэффициент диффузии магнитного поля. Будем использовать уравнение состояния идеального газа.

(1)

$$\dot{M} = -2\pi r v_r \Sigma$$

$$\dot{M}\Omega_k f = 2\pi \alpha c_T^2 \Sigma$$
(2)

$$v_{\varphi} = \sqrt{\frac{GM}{r} \left(1 + \frac{z^2}{r^2}\right)^{-3/2}} - \frac{rB_z}{4\pi\rho} \frac{B_r}{H}$$

$$H = \frac{c_T}{\Omega_k}$$

$$H = \frac{c_T}{\Omega_k}$$
(3)

$$T^4 = \frac{3}{8} \kappa_R \Sigma T_{eff}^4$$

$$(4) \rightarrow \begin{cases} B_r = -\frac{v_r H}{\eta} B_z \\ B_{\varphi} = -\frac{3}{2} \left(\frac{H}{r}\right)^2 \frac{v_{\varphi} H}{\eta} B_z - \frac{1}{2} \left(\frac{H}{r}\right) \frac{v_{\varphi} H}{\eta} B_r \\ B_r = \begin{cases} B_{z0} \frac{\Sigma}{\Sigma_0}, & R_m \gg 1 \\ \sqrt{4\pi x \rho^2 r |v_r|}, & R_m < 1 \end{cases}$$

- 1. Дудоров, Хайбрахманов, 2013, Вестник ЧелГУ, 9(300), 27
- 2. <u>Dudorov, Khaibrakhmanov, 2014, Ap&SS, 352, 103</u>
- 3. Khaibrakhmanov et al., 2017, MNRAS, 464, 586
- 4. Khaibrakhmanov, Dudorov, 2019, MGD, 55, 65

Уравнения вертикальной структуры

(2)
$$\left\{\begin{array}{l} \frac{dp}{dz} = -\rho \frac{GM}{r^3} z - \frac{d}{dz} \left(\frac{B_{\varphi}^2}{8\pi}\right) \\ \frac{16\sigma T^3}{3\kappa_R \rho} \frac{dT}{dz} = -F_z \\ (3) \\ \frac{dF_z}{dz} = \frac{3}{2} \alpha p \Omega_k \\ \frac{d^2 B_{\varphi}}{dz^2} = -\frac{3}{2} \frac{B_z}{\eta} v_k \frac{z}{r^2} \\ \frac{Heusecthue:}{p, T, F_z, B_{\varphi}} \\ \frac{Kopoponum Kopopone Kopopone Kopopone Kopopone Kopopone Kopopone Kopopone Kopopone Kopopone Konstructure K_R(\rho, T), v_k = r\Omega_k, B_z, T_{eff} \end{array}\right\}$$

уравнение магнитостатического равновесия

поток лучистой энергии

уравнение теплового баланса

уравнение баланса диффузии и адвекции магнитного поля

Хайбрахманов, Дудоров, ЧФМЖ, 2021, 6, 52

Метод решения уравнений модели

РАДИАЛЬНАЯ СТРУКТУРА

ВЕРТИКАЛЬНАЯ СТРУКТУРА

- ■В частном случае $x \propto n^{-q}$: аналитическое решение
- В общем случае: система нелинейных алгебраических уравнений
- Метод простых итераций совместно с методом бисекции. Начальное приближение – кинематическая модель

- •Система ОДУ первого порядка
- Метод Рунге-Кутты 4-го порядка точности с автоматическим выбором шага
- Координата фотосферы *z_s* находится методом стрельбы.

Численная модель реализована в программном комплексе Бельмондо на языке программирования С++

параметр	диапазон значений	принятые значения	стандартное значение
(1)	(2)	(3)	(4)
\dot{M}	$(0.1 - 10) \times 10^{-8} \frac{M_{\odot}}{$ год	$\propto M^2$	$10^{-8} \frac{M_{\odot}}{$ год
lpha	0.001-0.1	0.01	0.01
M	$(0.5 - 4) M_{\odot}$	$(0.5-2) M_{\odot}$	$1M_{\odot}$
$R_{\rm s}$	$(1.5 - 4) R_{\odot}$	$2R_{\odot}$	$2R_{\odot}$
$B_{\mathbf{s}}$	(1-3.5) кГс	2 кГс	2 кГс
L_{\star}	$(0.1 - 100) L_{\odot}$	$(0.5 - 10) L_{\odot}$	$1L_{\odot}$
Y_{d}	0.01	0.01	0.01
$a_{\mathbf{d}}$	≤ 1 MM	0.01 мкм – 1 мм	0.1мкм
ξ_0	$(10^{-17} - 10^{-16})\mathrm{c}^{-1}$	0, $(10^{-17} - 10^{-16}) c^{-1}$	$10^{-17}{ m c}^{-1}$
$L_{\rm XR}$	$(10^{29}-10^{32})$ эрг с $^{-1}$	$(10^{29}-10^{32})$ эрг с $^{-1}$	10^{30} эрг с $^{-1}$

Параметры модели

Коэффициент поглощения $\kappa_R(\rho, T)$ — интерполяция таблиц Семенова и др. (2003, A&A, 410, 611) и OPAL (Iglesias, Rogers, 1996, ApJ, 464, 943)

Аналитическое решение

Аналитическое решение

■В случае степенной зависимости x ∝ n^{-q} уравнения модели имеют аналитическое решение → степенные решения для радиальных профилей Σ, T, v_r, v_φ, H, n, B, ...

•В частности, в области вмороженного магнитного поля (для $\kappa_R = 3 \times 10^{-3} \text{ см}^2/\Gamma$) $B_Z = 0.29 \left(\frac{\alpha}{0.01}\right)^{-3/4} \left(\frac{\dot{M}}{10^{-8} M_{\odot}/\Gamma \text{od}}\right)^{1/2} \left(\frac{M}{1M_{\odot}}\right)^{1/8} \left(\frac{r}{1 \text{ a.e.}}\right)^{-3/8} \Gamma \text{c}$

•В области эффективной магнитной амбиполярной диффузии

$$B_{z} = 0.11 \left(\frac{\xi}{10^{-17} \text{ s}^{-1}} \cdot \frac{a_{d}}{0.1 \text{ мкм}}\right)^{1/2} \left(\frac{\alpha}{0.01}\right)^{1/16} \left(\frac{\dot{M}}{10^{-8} M_{\odot}/\text{год}}\right)^{3/8} \left(\frac{M}{1M_{\odot}}\right)^{5/32} \left(\frac{r}{1 \text{ a.e.}}\right)^{-15/32} \text{ }\Gamma\text{c}$$

Радиальная структура диска

Радиальная структура диска Стандартные параметры

Радиальные профили поверхностной плотности и температуры согласуются с наблюдаемыми

Радиальная структура диска Стандартные параметры

Радиальные профили поверхностной плотности и температуры согласуются с наблюдаемыми

• В области *r* ∈ [0.3,20] а.е. расположена «мертвая» зона

Радиальная структура диска Стандартные параметры

Радиальные профили поверхностной плотности и температуры согласуются с наблюдаемыми

- В области *r* ∈ [0.3,20] а.е. расположена «мертвая» зона
- В диске выделяется три области с различной геометрией магнитного поля

Радиальная структура диска Стандартные параметры

• Плазменный параметр $\beta > 1$ не постоянен в диске

Синтетические карты поляризованного излучения 1.3 мм

- «Мертвая» зона может наблюдаться как область наиболее низкой степени поляризации
- Совокупность квазирадиального и квазиазимутального магнитного поля проявляется как спиральная структура

Khaibrakhmanov et al., 2017, MNRAS, 464, 586

На внутренней границе диска *В* сравнимо с дипольным магнитным полем звезды

- На внутренней границе диска Всравнимо с дипольным магнитным полем звезды
- Амбиполярная диффузия в «мертвой»
 зоне понижает В на порядок

- На внутренней границе диска Всравнимо с дипольным магнитным полем звезды
- Амбиполярная диффузия в «мертвой» зоне понижает *В* на порядок
- Вне области тепловой ионизации, r > 0.2
 a.e., B < a_d^{1/2}, т.е. укрупнение пылинок
 ведет к увеличению интенсивности
 магнитного поля

- На внутренней границе диска Всравнимо
 с дипольным магнитным полем звезды
- Амбиполярная диффузия в «мертвой» зоне понижает *В* на порядок
- Вне области тепловой ионизации, r > 0.2
 а.е., B ∝ a_d^{1/2}, т.е. укрупнение пылинок
 ведет к увеличению интенсивности
 магнитного поля
- На внешней границе диска B стремится к магнитному полю межзвездной среды с учетом зависимости $B_c \propto \rho_c^{1/2}$

Вертикальная структура.

Вертикальная структура. Конфигурации магнитного поля, r = 0.2 a.e.

<u>Конфигурация I</u>: $B_{\varphi}(0) = 0$, $B_{\varphi}(z_s) = B_{ext}$ При $R_m > 1$ профиль $B_{\varphi}(z)$ является немонотонным. При $R_m = 375$ вблизи поверхности генерируется динамически сильное магнитное поле, $\beta \sim 1$.

Вертикальная структура. Конфигурации магнитного поля, r = 0.2 a.e.

<u>Конфигурация I</u>: $B_{\varphi}(0) = 0$, $B_{\varphi}(z_s) = B_{ext}$ При $R_m > 1$ профиль $B_{\varphi}(z)$ является немонотонным. При $R_m = 375$ вблизи поверхности генерируется динамически сильное магнитное поле, $\beta \sim 1$.

<u>Конфигурация II</u>: $B_{\varphi}(0) = 0, \frac{\partial B_{\varphi}}{\partial z}(z_s) = 0$ $B_{\varphi}(z)$ монотонно растет к поверхности.

Вертикальная структура

Конфигурация I: расширение диска вблизи поверхности

<u>Конфигурация II</u>: поджатие диска

Отклонение от кеплеровского вращения

Отклонение от кеплеровского вращения

• Случай $\dot{M} = 10^{-8} M_{\odot}/$ год, $a_d = 1$ мм: динамически сильное магнитное поле, $\beta \to 1$

Отклонение от кеплеровского вращения

- Отклонение от кеплеровского вращения
 - «Газодинамическое»: $\frac{\Delta g}{g} \sim 10^{-3} 10^{-2}$
 - «Магнитное»: сравнимо с газодинамическом во внешней области диска

Динамика магнитных силовых трубок в АД МЗ

Динамика магнитных силовых трубок в АД МЗ

В области вмороженности в АД МЗ происходит интенсивная генерация тороидального поля. Решение – магнитная плавучесть (образование и всплытие магнитных силовых трубок)

Постановка задачи

 Рассматриваются тороидальные магнитные силовые трубки (МСТ), образующиеся в области интенсивной генерации магнитного поля В_о

•Исследуется динамика тонкой МСТ единичной длины

Основные уравнения^{1,4}

(1)	$ ho rac{dec{v}}{dt}$	$= (\rho - \rho_e)\vec{g} + \vec{f_d}$
(2)	$rac{dec{r}}{dt}$	$= \vec{v}$
(3)	dQ	$= dU + P_e dV$
(4)	$P_g + \frac{B^2}{8\pi}$	$= P_e + \frac{B_e^2}{8\pi}$
(5)	$\frac{dP_e}{dz}$	$= -\rho_e g$
(6)	М	$= \rho \pi a^2 2 \pi r$
(7)	Φ_m	$= B\pi a^2$

Учитывается:

- аэродинамическое и
 турбулентное трение^{2,3}
 лучистый теплообмен с
 окружающим газом
 однородное магнитное поле
- диска⁴

¹Дудоров, Кириллов, 1985, Солн.Д., 12, 85 ²Паркер, 1982 ³Pneuman, Raadu, 1972, ApJ, 172, 739 <u>4Dudorov et al., 2019, MNRAS, 487, 5388</u>

Основные уравнения

$$(1) \qquad \rho \frac{d\vec{v}}{dt} = (\rho - \rho_{e})\vec{g} + \vec{f_{d}} \rightarrow \qquad \frac{dv}{dt} = \left(\frac{\rho_{e}}{\rho} - 1\right)g + f_{d}$$

$$(2) \qquad \frac{d\vec{r}}{dt} = \vec{v} \qquad \rightarrow \qquad \frac{dz}{dt} = v$$

$$(3) \qquad dQ = dU + P_{e}dV$$

$$(4) \qquad P_{g} + \frac{B^{2}}{8\pi} = P_{e} \qquad \rightarrow \qquad \frac{d\rho}{dt} = \frac{h_{c}P_{T} + U_{T}\rho_{e}gv}{P_{T}(U_{\rho} - P_{e}/\rho^{2}) - U_{T}(P_{\rho} + C_{m}\rho)}$$

$$(5) \qquad \frac{dP_{e}}{dz} = -\rho_{e}g \qquad \rightarrow \qquad \frac{dT}{dt} = \frac{\rho_{e}gv(P_{e}/\rho^{2} - U_{\rho}) - h_{c}(P_{\rho} + C_{m}\rho)}{P_{T}(U_{\rho} - P_{e}/\rho^{2}) - U_{T}(P_{\rho} + C_{m}\rho)}$$

$$(6) \qquad M = \rho\pi a^{2}2\pi r \qquad \rightarrow \qquad a = a_{0}(\rho/\rho_{0})^{-1/2}$$

$$(7) \qquad \Phi_{m} = B\pi a^{2} \qquad \rightarrow \qquad B = B_{0}(\rho/\rho_{0})$$

$$h_{c} = -\frac{8}{3\chi\rho}\frac{\sigma_{R}T^{4} - \sigma_{R}T_{e}^{4}}{a^{2}}$$

Модель вертикальной структуры диска

•Политропный диск

$$p_e(z) = \rho_m \left[1 - \left(\frac{z}{H_k}\right)^2 \right]^{\frac{1}{k-1}}$$

$$T_e(z) = T_m \left[1 - \left(\frac{z}{H_k}\right)^2 \right],$$

$$H_k = \sqrt{\frac{2k}{k-1}} H,$$

где *H* – изотермическая шкала высоты, k = 1 + 1/n, *n* – показатель политропы

•Поверхность диска, *z_s*, определяется границей его фотосферы

Модель вертикальной структуры диска

 Над диском находится гидростатическая корона с температурой, которая определяется нагревом излучением звезды

$$T_c = 185 \left(\frac{f}{0.05} \frac{L}{L_{\odot}}\right)^{\frac{1}{4}} \left(\frac{r}{1 \text{ a. e.}}\right)^{-1/2}$$
 K,

где *f* – доля потока излучения звезды, перехватываемого поверхностными слоями диска. Давление короны у поверхности диска равно давлению межзвездной среды с концентрацией 10⁹ см⁻³ и температурой 20 К.

При переходе от оптически толстого диска к оптически прозрачной короне температура экспоненциально возрастает с характерным масштабом $\Delta z_{tr} = H$

Модель динамики МСТ

Уравнения движения МСТ решаются с учетом сил плавучести и сопротивления, лучистого теплообмена с окружающим газом, магнитного поля диска

•Структура диска рассчитывается с помощью модели Дудорова и Хайбрахманова

•Обыкновенные дифференциальные уравнения динамики МСТ решаются методом Рунге-Кутты 4-го порядка точности с автоматическим выбором шага для относительной погрешности 10⁻⁴

Алгоритм решения уравнений модели реализован в численном коде Хариус на языке программирования C++

Параметры расчетов

- MCT
 - Изначально, $z_0 = 0.5H$, в тепловом равновесии с окружающим газом, $T = T_e$
 - Начальная плотность определяется из равенства давлений P = P_e

величина	обозначение	Диапазон	Значение по умолчанию
плазменный параметр	eta_0	0.01, 0.1, 1, 10	1
радиус	a_0	[0.01, 0.4] <i>H</i>	0.1 <i>H</i>
расстояние от звезды	r	[0.012, 1] a.e.	0.15 a.e.

• Аккреционный диск MWC 480: $M_{\star} = 2M_{\odot}$, $R_{\star} = 1.67R_{\odot}$, $\dot{M} = 10^{-7}M_{\odot}$ /год, $L_{\star} = 11.2L_{\odot}$, $B_{\star} = 1$ кГс (Donehew, Brittain, 2011, ApJ, 141,46; Hubrig et al., 2011, A&A, 536, A45)

Khaibrakhmanov & Dudorov, OAst, 2022, accepted

Динамики МСТ без внешнего поля, $eta_0=1$

Без внешнего магнитного поля МСТ всплывают из диска со скоростями 10-15 км/с и формируют истекающую замагниченную корону

Динамики МСТ во внешнем поле, r = 0.5 a.e.

Во внешнем магнитном поле МСТ испытывают колебания вблизи поверхности

диска

Тепловые колебания МСТ

Колебания сопровождаются вариациями температуры МСТ

Эти вариации могут давать вклад в ИК-переменность излучения АД МЗ

Flaherty et al., 2016, ApJ, 833, 104

Dudorov et al., 2019, MNRAS, 487, 5388

Заключение

- 1. Разработана МГД-модель аккреционных дисков молодых звезд с остаточным крупномасштабным магнитным полем. Модель хорошо описывает наблюдательные данные
- 2. Магнитное поле приводит к отклонению толщины диска от гидростатической
- Отклонение от кеплеровского вращения может быть сравнимо с газодинамическим во внешней области диска. Это имеет важное значение с точки зрения радиального дрейфа пылинок
- ИК-переменность молодых звездных объектов может быть обусловлена динамикой МСТ, всплывающих из областей интенсивной генерации магнитного поля
- 5. Дальнейшее развитие полностью самосогласованная динамическая 2Дмодель

Спасибо за внимание!

- Работа в разделе 2d выполнена при поддержке правительства РФ и Министерства высшего образования и науки РФ по гранту 075-15-2020-780 (N13.1902.21.0039, договор 780-10)
- Работа в разделе 3 выполнена при поддержке Российского научного фонда (проект 19-72-10012)

Credits

- 1: Chris Burrows (STScI), the WFPC2 Science Team and NASA
- 2: ESO/H. Avenhaus et al./DARTT-S collaboration
- 3: ALMA (ESO/NAOJ/NRAO)

4: NASA, A. Watson (UNAM), K. Stapelfeldt (JPL), J. Krist (STScI) and C. Burrows (ESA/STScI)

- 5: NASA, ESA and The Hubble Heritage Team (STScI/AURA)
- 6: R. A. Gutermuth (Harvard-Smithsonian CfA) et al./JPL-Caltech/NASA