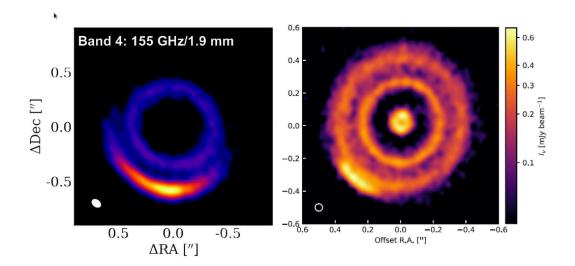
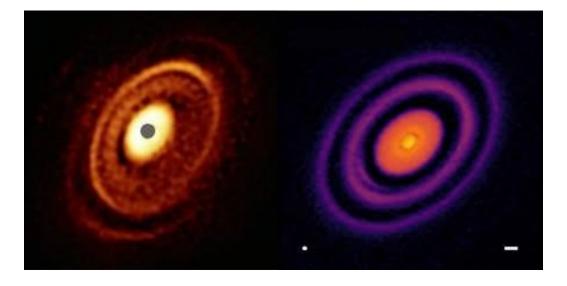


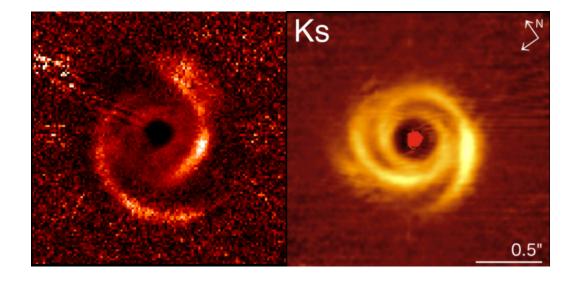
#### Государственный астрономический институт им. П.К.Штернберга Семинар отдела релятивистской астрофизики


# Моделирование свободного падения струи вещества на протопланетный диск

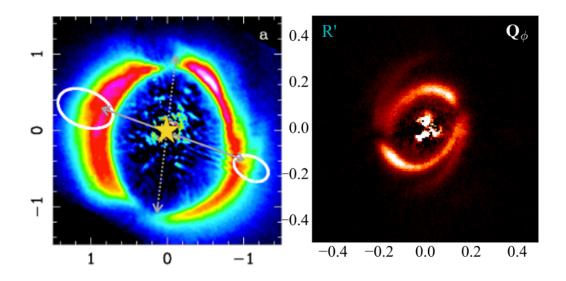
Демидова Татьяна Валерьевна Григорьев Виталий Валерьевич


Крымская астрофизическая обсерватория РАН

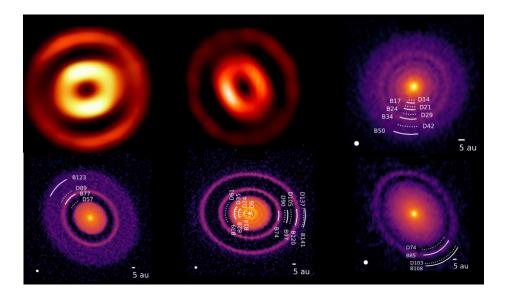
29 апреля 2025


# Дугообразные асимметрии на изображениях ППД, Cazzoletti+, 2018; Perez+, 2018

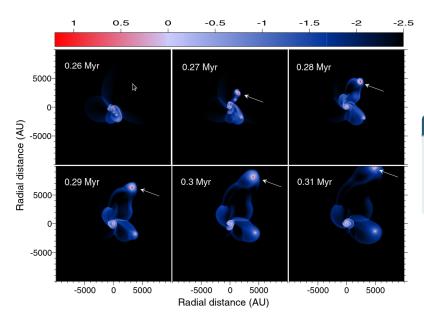



#### Туго закрученные спирали на изображениях ППД, Avenhaus+ 2018: Нидпа+ 2018




# Двухрукавные спирали на изображениях ППД, Garufi+, 2013; Benisty+, 2015

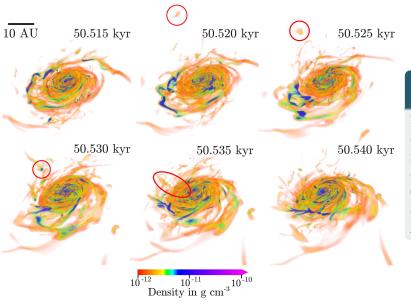



# Симметричные тени на изображениях ППД, Marino+, 2014; Benisty+, 2017



# Кольцевые структуры на изображениях ППД, *Fedele+, 2017; van der Plas+, 2017; Huang+, 2016*

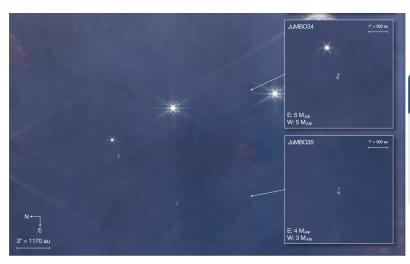



## Компактные сгустки — выбросы



#### Vorobyov+, A&A, 2017

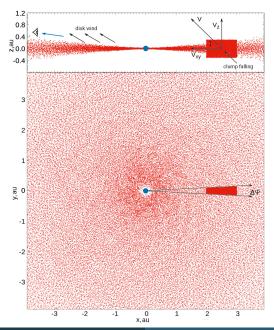
2D, пролет массивной звезды (intruder), 12 моделей. Получались сгустки:  $5-25M_{lupiter}$ 


# Компактные сгустки — остатки протозвездного облака



# Kuffmeier+, A&A, 2018

3D-моделирование: образование сгустков параллельно с образованием ППД Сгустки падали в область < 10 а.е. от звезды


#### JuMBOs: свободные компактные объекты



# Pearson & McCaughrean, 2023

JWST, изображения+спектры: 42 объекта, 0.7 – 13M<sub>Jupiter</sub>, 25 – 390 a.e.

#### Постановка задачи



#### Звезда

масса  $M=1.4 M_{\odot}$ , радиус  $R=2.3 R_{\odot}$ , температура  $T=7500~{
m K}$ 

#### Протопланетный диск

$$\rho(r, z, 0) = \frac{\Sigma_0}{\sqrt{2\pi}H(r)} \frac{r_{in}}{r} e^{-\frac{z^2}{2H^2(r)}}, v = \sqrt{\frac{GM}{r}}$$

$$H(r) = \sqrt{\frac{\kappa T_d(r) r^3}{GM\mu m_H}}, T_d(r) = \sqrt[4]{\frac{\Gamma}{4}} \sqrt{\frac{R}{r}} T,$$

 $r \in [0.1:50]$  a.e.;  $M_d = 0.01 M_{\odot}$  ;  $\mu = 2.35$  ;  $\Gamma = 0.05$ 

#### Возмущение

 $r_0, r_1$  — радиальные границы; I — наклон вектора скорости;  $L = V/V_K$ ; m — масса;  $\Delta \phi$  — азимутальный угол.

#### Основные уравнения

$$\begin{cases} \frac{\partial \rho}{\partial t} + \nabla \rho \vec{v} = 0, \\ \rho \left( \frac{\partial \vec{v}}{\partial t} + \vec{v} \nabla \vec{v} \right) = \rho \nabla \phi - \nabla P + \vec{F_{\nu}}, \\ P = c^{2}(r)\rho; \end{cases}$$

$$\downarrow \text{SPH}$$

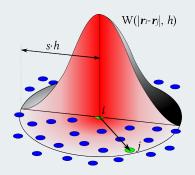
$$\begin{cases} \rho_{i} = \sum_{j} m_{j} W(\vec{r_{i}} - \vec{r_{j}}, h_{i}), \\ \frac{\Delta \vec{r_{i}}}{\Delta t} = \vec{v_{i}}, \\ \frac{\Delta \vec{v_{i}}}{\Delta t} = \vec{\Psi_{i}} + \vec{G_{i}} + \vec{\nu_{i}}, \\ P_{i} = c_{i}^{2} \rho_{i} \end{cases}$$

# Гидродинамическое ускорение $\vec{\Psi}_i = -\frac{\vec{r}_i}{|r_i|} \sum_j \left( m_j \frac{P_i}{\Omega_i \rho_i^2} \nabla_i W_{ij}(h_i) + \frac{P_j}{\Omega_j \rho_j^2} \nabla_i W_{ij}(h_j) \right),$ $\Omega_i = \left[ 1 - m_i \frac{\partial h_i}{\partial \rho_i} \sum_j \frac{\partial W_{ij}(h_i)}{\partial h_i} \right];$ Искусственная вязкость $\nu_i = -0.5 \sum_j m_j \Pi_{ij} [\nabla_i W_{ij}(h_i) + \nabla_i W_{ij}(h_j)],$ $\Pi_{ij} = \begin{cases} [-\alpha c_i \mu_{ij} + \beta \mu_{ij}^2] / \overline{\rho_{ij}}, & \vec{v}_{ij} \cdot \vec{r}_{ij} < 0 \\ 0, & \vec{v}_{ij} \cdot \vec{r}_{ij} > 0; \end{cases}$

$$\mu_{ij}=rac{\sum_{ij}^{N}r_{ij}^{N}\cdot r_{ij}^{N}}{|r_{ij}^{N}|^{2}},$$
  $lpha=1$ ,  $eta=0$ ;  $\Gamma$ равитация  $G_{i}=rac{M_{*}\vec{R}}{|R|^{3}}+$  самогравитация

Расчеты выполнены с помощью кода Gadget-2 (Springel, 2005), модифицированного для протопланетных дисков (Демидова, 2016)

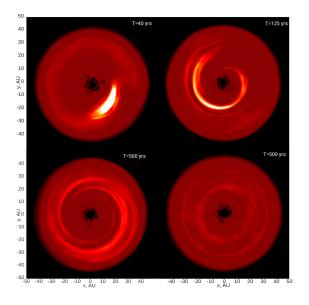
# Подходы к решению уравнений газодинамики


#### Лагранжевы методы

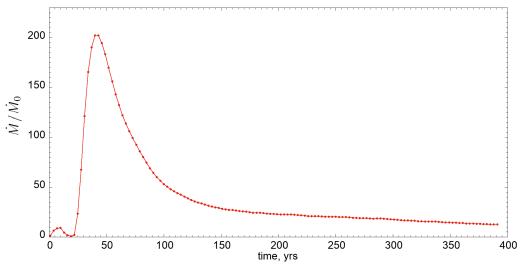
Суть: движущиеся мат. точки, в которых ищем значения макропараметров Варианты: Smooth Particle Hydrodynamics, Particles In Cell

$$f(\mathbf{r}) = \int_{\Omega} f(\mathbf{r}') \delta(\mathbf{r} - \mathbf{r}') dx' \approx$$

$$\approx \int_{\Omega} f(\mathbf{r}') W(|\mathbf{r} - \mathbf{r}'|, h) d\mathbf{r}' \approx \sum_{j=1} m_j \frac{f(\mathbf{r}_j)}{\rho_j} W(|\mathbf{r} - \mathbf{r}_j|, h)$$

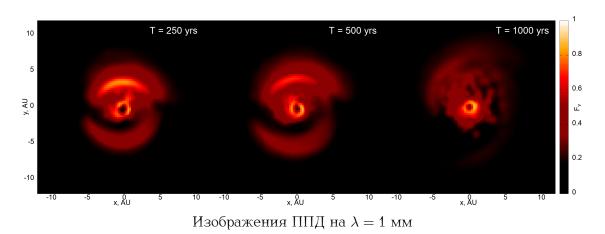

$$W(q) = \alpha_D \begin{cases} 0.25(2 - q)^3 - (1 - q)^3, & 0 \leq q \leq 1\\ 0.25(2 - q)^3, & 1 \leq q \leq 2\\ 0, & q \geqslant 2 \end{cases}$$



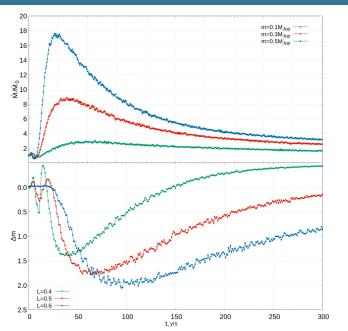

**Преимущества:** реализация более сложной геометрии, идеологически близки к самой среде, динамическое разрешение, континуум

**Недостатки:** дополнительные параметры, сложнее в реализации, поиск соседних частиц, динамическое разрешение, граничные условия

#### Изображения ППД на $\lambda=1$ мм, Demidova & Grinin, 2022




#### Вспышка типа FU Ori, Demidova & Grinin, 2023




Масса сгустка  $3M_J$ , место падения 2-3 а.е., скорость 60% от Кеплеровой скорости.

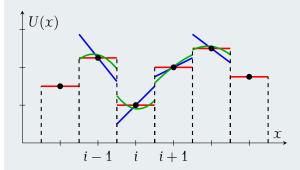
# Наклонный внутренний диск — симметричные тени, Demidova & Grinin, 2023

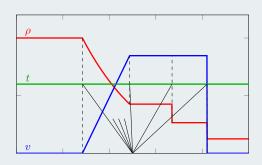


# Кривая блеска: запыленный дисковый ветер



#### Гринин & Демидова, ПАЖ, 2024


$$\begin{split} \dot{M}_{wind} &\approx 0.1 \dot{M} \\ \tau &= \tau_{max} (\dot{M} - \dot{M_0}) / \dot{M}_{max} \\ I &= I_{tot} e^{-\tau} + I_{sc} \\ I_{tot} &= I_{\star} \cdot \dot{M} / \dot{M}_0 \\ \tau_{max} &= 5, I_{sc} = 0.01 I_{tot} \\ \Delta m &= -2.5 lg \left(\frac{I}{I_{\star}}\right) \end{split}$$


## Подходы к решению уравнений газодинамики

#### Методы конечных объемов

Суть: ячейки заполняют пространство, внутри них ищем распределение макропараметров

Варианты: схема Годунова, метод Галеркина...





**Преимущества:** выполнение интегральных законов сохранения, лучшая устойчивость, интерполяция

Недостатки: численные диссипации, осцилляции, сложнее в реализации

# "Падение сгустка" на ППД

Grigoryev, Demidova, 2023

#### **PLUTO**

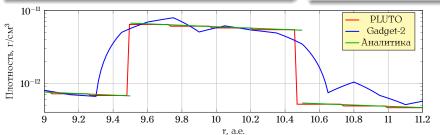
PLUTO: Mignone+, ApJS, 2007

 $\gamma=5/3$ ,  $\nu_1$  — lpha-параметризация

Уравнение энергии

 $(r, \theta, \varphi) : 195 \times 18 \times 256 = 9 \times 10^5$  ячеек в

[0.4;47.94] a.e.  $\times [77.34^{\circ};102.66^{\circ}] \times [0:2\pi]$ 

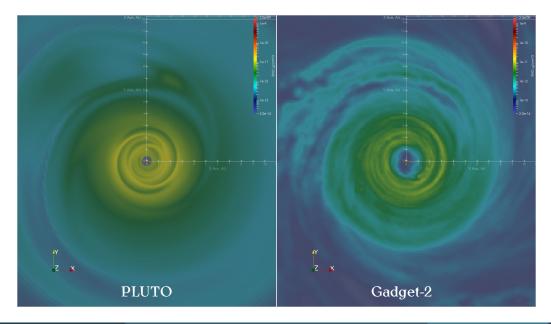

#### Gadget-2

SPH: Monaghan, ARA&A, 1992, Gadget-2: Springel, MNRAS, 2005

 $\gamma = 7/5$ ,  $\nu_1$  — численная вязкость Уравнение на энтропию

 $(x,y,z):10^6$  частиц,  $r_{max}=100$  а.е.,

 $30 \pm 2$  соседей




 $1M_{Jupiter}$  $v_0 = 0.6v_{kepler}$ 

ГУ: PLUTO:  $p_b = 10^{-12} p_0; \rho_b = 10^{-12} \rho_0; \vec{v}_b = \vec{v} \sqrt{\frac{r}{r_b}}$ 

Gadget-2: Sink-cell

# PLUTO vs. Gadget-2: расчеты, t=20 лет



# Уравнения газодинамики + вязкость и теплопроводность

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \vec{v}) = 0$$

$$\frac{\partial (\rho \vec{v})}{\partial t} + \nabla \cdot \left( \rho \vec{v} \cdot \vec{v} - p \hat{I} \right)^T = -\rho \nabla \Phi + \nabla \cdot \Pi(\nu)$$

$$\frac{\partial (\varepsilon_t + \rho \Phi)}{\partial t} + \nabla \cdot \left[ (\varepsilon_t + p + \rho \Phi) \vec{v} \right] =$$

$$= \nabla \cdot (\vec{v} \cdot \Pi(\nu)) + \nabla \cdot \vec{F}_c$$

$$OR$$

$$\frac{\partial S}{\partial t} = \frac{1}{2} \frac{\gamma - 1}{\rho^{\gamma - 1}} \nabla \cdot (\vec{v} \cdot \Pi(\nu))$$

$$\Pi(\nu) = \nu_1 \left[ \nabla \vec{v} + (\nabla \vec{v})^T \right] + \left( \nu_2 - \frac{2}{3} \nu_1 \right) (\nabla \cdot \vec{v}) \hat{I}$$

$$\vec{F}_c = \kappa \cdot \nabla T$$

ho — плотность газа  $\vec{v}$  — скорость р — давление  $\Phi = -GM_*/R$  — грав.потенциал  $\varepsilon_t$  — SIE + уд.кин. энергия  $\gamma$  — параметр адиабаты  $\hat{I}$  — ед. матрица  $p = \rho \epsilon (\gamma - 1)$  $S = p/\rho^{\gamma}$  — энтропия

 $u_1, \ \nu_2$  — коэф. вязкости  $\kappa$  — коэф. теплопроводности

# Честное падение: Григорьев & Демидова, АЖ 2024

#### Начальные и граничные условия

Demidova, T.V., Grinin, V.P., ApJ, 2022

$$\rho(r,z) = \frac{\Sigma_0}{\sqrt{2\pi}H(r)} \frac{r_{\text{in}}}{r} e^{-\frac{z^2}{2H^2(r)}}$$

$$\Sigma_0 = \frac{M_{\text{disk}}}{2\pi r_{\text{in}}(r_{\text{out}} - r_{\text{in}})}$$

$$H(r) = \sqrt{\frac{k_{\text{B}}T_{\text{mid}}(r)r^3}{GM_*\mu m_{\text{H}}}}$$

Chiang, E.I., Goldreich, P., AJ, 1997

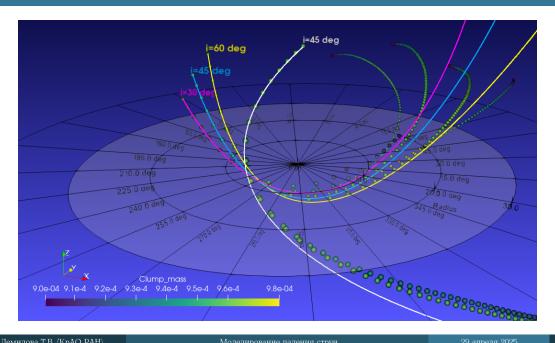
$$T_{\mathrm{mid}}(r) = \sqrt[4]{\frac{\Gamma}{4}} \sqrt{\frac{R_*}{r}} T_*$$

Сгусток:  $1M_{Jupiter}$ , 20 au.,  $\sqrt{2}v_{Kepler}$ 

Звезда:  $1 M_{\odot}$ 

ГУ на R:  $\kappa_b \nabla_n T_b = \kappa \nabla_n T$ ,  $\nu_b \nabla_n (\rho_b \vec{v}_b) = \nu \nabla_n (\rho \vec{v})$  и НД

#### PLUTO

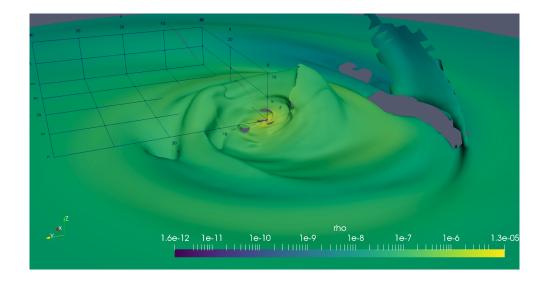

Метод Годунова: Годунов С.К.+, М:Наука, 1976, PLUTO: Mignone+, ApJS, 2007

 $(r,\theta,\varphi):144\times60\times144$  ячеек в области [0.2;107.2] а.е.  $\times[15^\circ;165^\circ]\times[0:2\pi]$   $\nu_1$  и  $\kappa$  — Shakura & Sunyaev, ApJ, 1973, Брагинский, 1963,  $\Pr_{turb}=1$ 

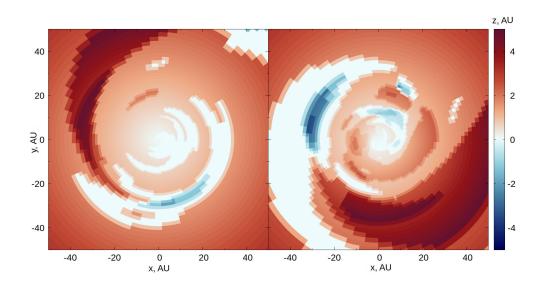
#### Вычисления

МСЦ РАН — филиал ФГУ ФНЦ НИИСИ РАН: https://www.jscc.ru 144 ядра  $\to \sim 90$  лет за  $24^h$ 

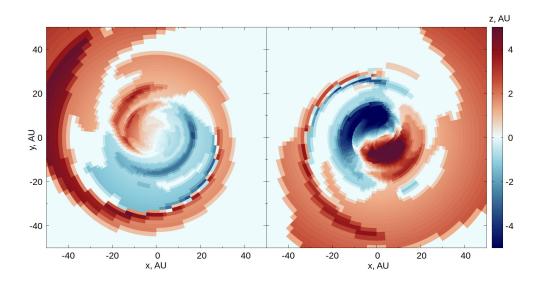
#### Сетка моделей




## Пересечения: время и расстояние от звезды


|                  | ДП-45 | ДП-р45 | ДП-60 | ДП-р60 | ДП-30 | ДП-р30 | ОП-45 | ОП-р45 |
|------------------|-------|--------|-------|--------|-------|--------|-------|--------|
| $\overline{t_1}$ | 6.7   | 6.7    | 6.9   | 6.9    | 6.6   | 6.6    | 9.3   | 9.3    |
| $t_{c1}$         | 6.9   | 6.9    | 7.1   | 7.1    | 6.7   | 6.7    | 9.5   | 9.6    |
| $R_1$            | 7.4   | 7.4    | 7.0   | 7.0    | 7.8   | 7.8    | 7.4   | 7.4    |
| $R_{c1}$         | 7.3   | 7.3    | 6.9   | 6.9    | 7.7   | 7.5    | 7.1   | 7.1    |
| $t_2$            | 14.9  | 14.9   | 16.2  | 16.2   | 14.0  | 14.0   | -     | -      |
| $t_{c2}$         | 17.2  | 15.1   | 20.0  | 17.8   | 15.8  | 14.2   | -     | -      |
| $R_2$            | 15.5  | 15.5   | 17.8  | 17.8   | 13.8  | 13.8   | -     | -      |
| $R_{c2}$         | 15.9  | 12.0   | 13.6  | 15.7   | 14.1  | 10.0   | -     | -      |

**Итого:** сгусток вытягивается в струю, после первого пересечения орбита заметно меняется. Спиральные волны проходят по диску

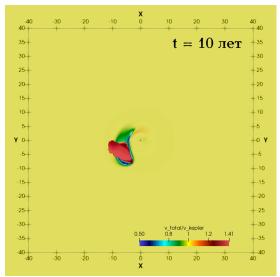

# Поверхность максимальной плотности (ДП-p45), t=100 лет

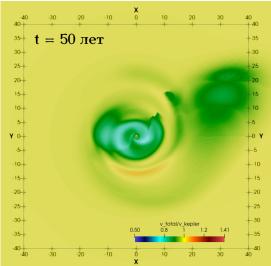


# Координата z поверхности максимальной плотности (ОП-45, ОП-р45) t=100 лет

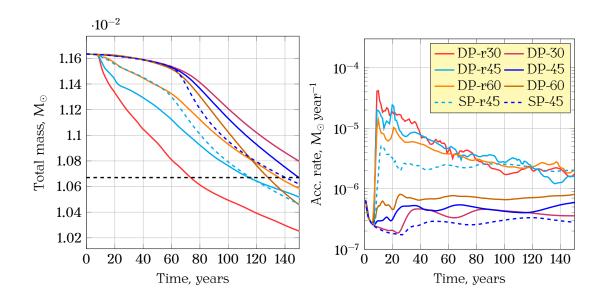


# Координата z поверхности максимальной плотности (ДП-45, ДП-p45) t=100 лет

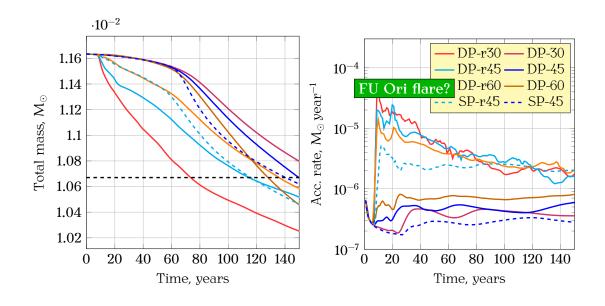




## Параметры наклонных дисков

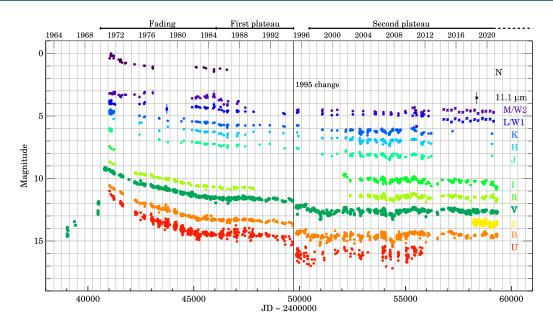
|         |                               | ДП-45 | ДП-р45 | ДП-60 | ДП-р60 | ДП-30 | ДП-р30 |
|---------|-------------------------------|-------|--------|-------|--------|-------|--------|
| 50 лет  | наклон, °                     | 7     | 12     | 4     | 8      | 4     | 17     |
|         | азимут $ec{n}$ , $^{\circ}$   | 308   | 128    | 285   | 165    | 301   | 71     |
|         | размер, а.е                   | 8     | 8      | 11    | 11     | 6     | 5?     |
|         | наклон, °                     | 7     | 18     | 6     | 20     | 5     | 14     |
| 100 лет | азимут $\vec{n}$ , $^{\circ}$ | 311   | 142    | 298   | 235    | 317   | 95     |
|         | размер, а.е                   | 12    | 13     | 14    | 12     | 12    | 10     |
|         | наклон, °                     | 4     | 22     | 6     | 21     | 4     | 7      |
| 150 лет | азимут $\vec{n}$ , $^{\circ}$ | 277   | 119    | 293   | 131    | 316   | 164    |
|         | размер, а.е                   | 22    | 14     | 20    | 15     | 17    | 24     |


**Итого**: ориентация наклонных дисков зависит от начальной орбиты, есть эволюция во времени

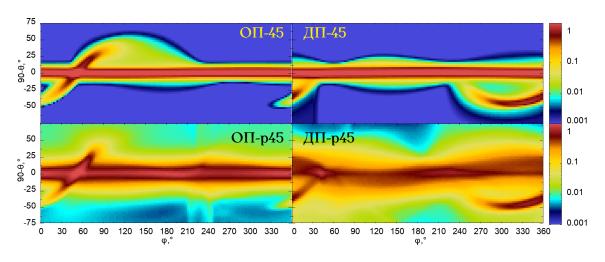
# Карта скоростей ОП-р45



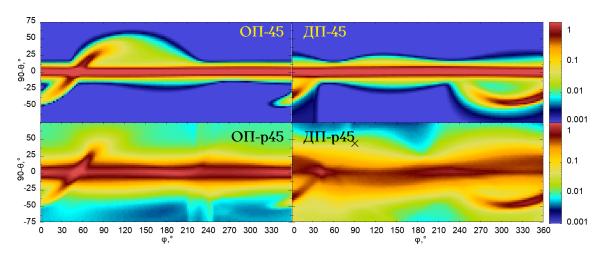




#### Изменение массы и темп аккреции

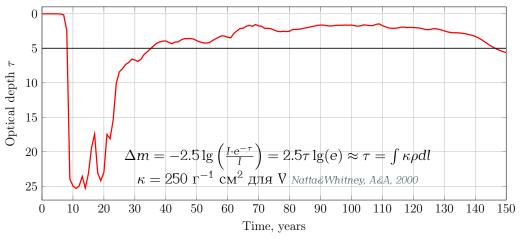



#### Изменение массы и темп аккреции




## V1057 Cyg: Szabó+, Apj, 2021



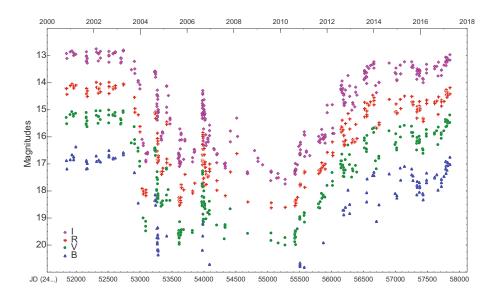

#### Оптическая толщина, t=10 лет



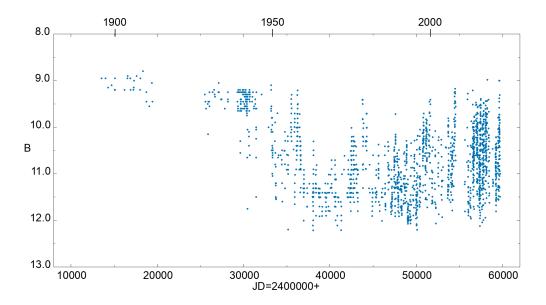
#### Оптическая толщина, t=10 лет



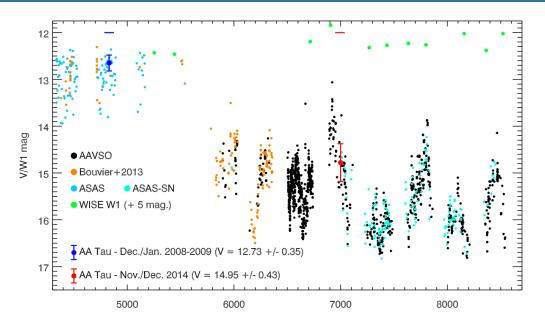
# Кривая блеска, ДП-р45




Grinin+, Aph, 2023: CQ Tau  $\Delta m \approx 3^m \sim$  год, минимум уже  $\sim 80$  лет + внутренний диск Chapillon+, A&A, 2008


Semkov+, A&A, 2015: V1184 Tau  $\Delta m \approx 5^m \sim$  год, минимум  $\sim 8$  лет

Bouvier+, A&A, 2013: AA Tau  $\Delta m \approx 4^m \sim$  год, минимум уже  $\sim 12$  лет


#### Звезда типа UX Ori: V1184 Tau, *Mutafov+, 2019*



#### Звезда типа UX Ori: CQ Tau, Гринин+, 2023



#### Звезда типа UX Ori: AA Tau, Covey+, 2021



#### Заключение

- Построена 3D численная модель протопланетного диска с учетом вязкости и теплопроводности
- ullet При взаимодействии ППД со сгустком массой  $1M_I$ 
  - образуются спиральные волны
  - происходит рост темпа аккреции, способный вызвать вспышку, аналогичную FU Ori (ретроградное движение)
  - при двойном пересечении орбитой диска образуется наклонный внутренний диск
  - при наблюдении с ребра кривая блеска соответствует наблюдательным данным
- 3D-моделирование апостериорно обосновало приближение "2D"

# Публикация

АСТРОНОМИЧЕСКИЙ ЖУРНАЛ, 2024, том 101, № 10, с. 866-884

#### МОДЕЛИРОВАНИЕ СВОБОДНОГО ПАДЕНИЯ СТРУИ ГАЗА НА ПРОТОПЛАНЕТНЫЙ ДИСК

© 2024 г. В. В. Григорьев\*, Т. В. Демидова\*\*

Крымская астрофизическая обсерватория Российской академии наук, Крым, Научный, Россия \*E-mail: vitaliygrigoryev@crao.ru \*\*proxima I@list.ru

Поступила в редакцию 20.03.2024 г. После доработки 12.06.2024 г. Принята в печать 18.07.2024 г.

Проблему формирования экзопланет на наклонных орбитах по отношению к экваториальной плоскости родительской звезды или основной плоскости протопланетного диска можно решить путем введения наклонного диска меньшего размера. Однако остается открытым вопрос природы такого внутреннего

# Благодарю за внимание!

e-mail: demidovatv@crao.ru colab.ws: R-38343-088CC-NX08A

