Why it is possible that the Oppenheimer-Volkoff limit exceeds
?
- fast rotation (which is naturally expected after the merging)
increases the Oppenheimer-Volkoff limit to the value
(Friedman & Ipser, 1987) for hard equations of state.
- high temperature of the formed object.
- relativistic behavior of nuclear forces.
Thus we can present these three sub-scenarios as follows:
1. The lifetime of HSP (``hot'' spinar) is completely
determined by the cooling time which
is of the order of s according to different calculations.
The subsequent
collapse is accompanied by the GWB, neutrino emission,
and possible weak photon emission can be expected:
It seems very attractive to identify this cooling time with the
mean characteristic gamma-ray burst duration s!
2. The lifetime of CSP (``cool'' spinar, the centrifugal forces
make the main contribution to the equilibrium) is completely defined
by the characteristic time of the angular momentum loss and
evolutionary track looks like
3. Finally, for the high Oppenheimer-Volkoff limit for the cool non-rotating object, when
we obtain the formation of a very powerful pulsar (maybe without pulsation) with the maximum spin rotation
The characteristic time of its evolution is governed by the
momentum loss rate.